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Introduction and motivations

Introduction

Envelopes are classical objects in Convex Analysis, Potential Theory were
Perron’s method (1920) was used to solve the Dirichlet Problem for the
Laplace (Poisson) equation. They also appear as solutions to (roof top)
obstacle problems and free boundary value problems for second order
(degenerate) elliptic PDE’s.

They were introduced in Complex Analysis by H. Bremermann (1959), and
studied by J. Siciak (1962), V. Zaharyuta (1974) and used later in
Pluripotential Theory by E. Bedford and B.A. Taylor in [BT76] to solve
the Dirichlet problem for the complex Monge-Ampère equation.

Recently envelopes with obstacle were used successfully in Kähler
Geometry by many authors in differents contexts: Boucksom-Berman
(2008), Berman-Demailly (2009), Roos-Witt-Nystöm (2012),
Boucksom-Bermann-Guedj-Zeriahi (2013), Berman (2013), Darvas
(2014),Dravas-Rubinstein, etc...
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Introduction and motivations

Following the viscosity approach developed by P.-L. Lions and his
collaborators in the early eighties ([CIL92]), we introduced in [EGZ11]
viscosity sub/supper-solutions and used the Perron method to solve some
degenerate complex Monge-Ampère equations on compact Kähler
manifolds (without using Yau’s theorem).

The plan of this lecture is the following :

explain how to extend Berman’s approximation process of envelopes
with obstacles by solutions to degenerate complex Monge-Ampère
equations,

explain the link between viscosity supersolutions and pluripotential
supersolutions using envelopes,

solve degenerate complex Monge-Ampère equations using lower
envelopes of pluripotential supersolutions and give a geometric
application to the existence a singular Kähler-Einstein metric on
certain algebraic varieties with mild singularities.
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Approximation of Envelopes

Quasi-plurisubharmonic functions

Let (X , ω) be a compact Kähler manifold of complex dimension n ≥ 1. We
will consider Kähler forms in the same (de Rham) cohomology class as ω.

By the ddc -lemma, any Kähler form ω̃ in (the de Rham) cohomology class
{ω} can be written as ω̃ = ω + ddcϕ, where ϕ is a smooth real function
on X such that ω̃ = ddcϕ+ ω > 0. This means that ωϕ := ddcϕ+ ω is a
Kähler metric on X : the functions ϕ is called a Kähler potential for ωϕ.

A function ϕ : X −→ R ∪ {−∞} is said to be ω-plurisubharmonic if it is
quasi-plurisbubharmonic in X and the associated curvature current
ωϕ := ω + ddcϕ ≥ 0 a closed positive currents on X .

Since we can write locally ω = ddcρ, we have ω + ddcϕ = ddcu where
u : ϕ+ ρ is then (a local) plurisubharmonic function.
We denote by PSH(X , ω) the convex set of ω-plurisubharmonic functions
in X . Then PSH(X , ω) ⊂ L1(X ).
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Approximation of Envelopes

Moreover by the ddc -lemma we have a canonical isomorphism

PSH0(X , ω) := {ϕ ∈ PSH(X , ω); max
X

ϕ = 0} ' T +
ω (X ),

where the right hand side denotes the convex set of closed positive
(1, 1)-currents on X that are cohomologuous to ω (fixed mass implies
compactness of PSH0(X , ω)).

Using Bedford and Taylor approach ([BT76,82]), it is possible to define
the complex Monge-Ampère operator on PSH(X , ω) ∩ L∞(X ). Given
ϕ ∈ PSH(X , ω) ∩ L∞(X ) we define locally in a coordinate chart
MAω(ϕ) := (ddcu)nBT = (ω + ddcϕ)n, where u := ϕ+ ρ is a bounded
plurisubharmonic function, ρ being a local potential of ω in the given chart.

Then we can see MAω(ϕ) as positive Borel measure with total mass∫
X
MAω(ϕ) =

∫
X
ωn
ϕ =

∫
X
ωn =: Vol(X , ω).
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Approximation of Envelopes

Envelopes

Let h : X −→ R be a Borel function which is (upper) bounded, the
obstacle function. We define the ω-psh envelope of h by the following
formula:

Pωh := (sup{u(z); u ∈ PSH(X , ω), u ≤ h in X})∗ .

By Bedford and Taylor ([1982]) we have Pωh ≤ h quasi everywhere (q.e.)
in X and then

Pωh := sup{u(z); u ∈ PSH(X , ω), u ≤ h q.e.in X},

As we will see, this function is a solution to an obstacle problem in X .

To study the regularity of the upper envelope Pωh in terms of the
regularity of h, R. Berman ([Be13]) introduced a new and original
approximation process that allows him to prove that Pωh is almost
C 1,1(X ) when h is smooth and ω is an entire cohomology class.
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Approximation of Envelopes

Here we are interested in more degenerate situations that arize in
applications.

For our purpose we will need to define more general envelopes. Let µ be a
non pluripolar positive Borel measure on X i.e. it puts no mass on
pluripolar sets in X . The envelope of an (upper) bounded Borel function h
on X with respect to µ is defined as

Pω,µh := sup{φ;φ ∈ PSH(X , ω), φ ≤ h µ− a.e. in X}.

Here are some basic properties:

Pω,µh is ω-psh function in X ,

Pω,µh ≤ h, µ-a.e. in X ,

Pω,µh = Pωh in X , if µ = fdV is a volume form with a positive
density 0 < f ∈ L1(X ),

Pω,µψ = ψ when ψ ∈ PSH(X , ω), hence Pω,µ ◦ Pω,µ = Pω,µ,

‖Pω,µh1 − Pω,µh2‖L∞(X ,µ) ≤ ‖h1 − h2‖L∞(X ,µ),

If (hj) decreases to h, then Pω,µ(hj) decreases to Pω,µh.
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Approximation of Envelopes

The main property of the envelope is the following orthogonality property
which plays an important role.

Proposition

If h is (quasi) lower semi-continuous in X and ĥ := Pω,µh, then∫
X

(h − ĥ)MA(ĥ) = 0.

In particular
∫
{ĥ<h}MAω(ĥ) = 0 and the Monge-Ampère measure of ĥ is

supported in the contact set {ĥ = h}.

This shows that ĥ is a solution of an obstacle problem.The proof is based
on a local balayage argument (see [BT82]).
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Approximation of Envelopes

Degenerate Complex Monge-Ampère Equations

Motivated by the problem of the existence of Kähler-Einstein metrics on
compact Kähler varieties with mild singularities, we will consider a more
general geometric context.

Let θ ≥ 0 be a smooth closed semi-positive (1, 1)-form on X such that∫
X θ

n > 0 and let µ be a degenerate volume form on X which puts no
mass on pluripolar subsets of X and such that

∫
X µ =

∫
X θ

n e.g.
θ := f ∗(ωY ) and µ := f ∗(dVY ) where f : X −→ Y is a resolution of a
singular Kähler projective variety with mild singularities, , ωY is a Kḧaler
metric on Y and dVY is a smooth non degenerate volume form on Y .

We need to extend the complex Monge-Ampère operator to a class of
singular θ-psh functions. More precisely for a given θ-psh function
ϕ ∈ PSH(X , θ), we associate the non pluripolar part of the
Monge-Ampère measure of ϕ, denoted by 〈(θ + ddcϕ)n〉, following an idea
of Bedford and Taylor ([BT85]) in the local case.
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Approximation of Envelopes

This is defined by

〈(θ + ddcϕ)n〉 := lim
k→+∞

1{ϕ>−k}(θ + ddc sup{ϕ,−k})n.

By definition this is a positive Borel measure on X which is concentrated
on the Borel set {ϕ > −∞} and puts no mass on pluripolar sets of X ,
whose total mass is ≤

∫
X θ

n.
Then we define E(X , θ) to be the class of functions ϕ ∈ PSH(X , θ) with
full Monge-Ampère mass i.e. such that

∫
X 〈(θ + ddcϕ)n〉 =

∫
X θ

n.

This the largest class containing PSH(X , θ) ∩ L∞(X ) where the complex
Monge-Ampère operator is well defined and satisfies the comparison
principle.

Let us denote by MAθ(ϕ) := 〈(θ + ddcϕ)n〉 = (θ + ddcϕ)n the
Monge-Ampère measure of ϕ.
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Approximation of Envelopes

We will need the following result.

Theorem (GZ07, EGZ09)

Let µ ≥ 0 be a non pluripolar positive Borel measure on X with
µ(X ) =

∫
X θ

n. For any α ≥ 0, there exists a unique function
ϕ = ϕα ∈ E(X , θ) (normalized when α = 0) such that

MAθ(ϕ) = eαϕµ, (1)

weakly in the sense of currents on X .

When θ > 0 is Kähler and µ > 0 is a smooth non degenerate volume form
on X , the theorem is well known.

If α = 0 by a famous theorem of S.T. Yau ([Y78]) the equation (1)
has a unique (normalized) smooth solution.

If α > 0, it was proved independently by T. Aubin [A78] and by S.T.
Yau ([Y78] that the equation (1) has a unique smooth solution.
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Approximation of Envelopes

These theorems answered some of the fundamental problems in Kähler
Geometry posed by E. Calabi in the early fifthies.

In the degenerate case, when µ is a continuous positive volume form, it
was proved in ([EGZ11]) that the solution to the complex Monge-Ampère
equation (1) with α > 0 can be also expressed as the upper envelope of all
(pluripotential = viscosity) subsolutions of the equation (1) .

This follows from the comparison principle for the equation (1).

Proposition

Let ϕ ∈ E(X , θ) be a pluripotential subsolution to the equation (1) with
α > 0, and let ψ ∈ E(X , θ) be a pluripotential supersolution of the same
equation. Then ϕ ≤ ψ in X .
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Approximation of upper envelopes

We will now give a generalization of the Berman process of approximation
of psh envelopes by solutions to complex Monge-Ampère equations.

Theorem (GLZ17)

Let u be a bounded lower semi-continuous function in X and let (ϕj) be
the sequence of functions in E(X , θ) solving the following equations

(θ + ddcϕj)
n = e j(ϕj−u)µ, j ∈ N. (2)

Then the sequence converges in L1(X ) and in capacity to the
(θ, µ)-envelope of u defined by

Pθ,µu := sup{ϕ ∈ PSH(X , θ);ϕ ≤ u, µ− a.e. in X}.
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Approximation of upper envelopes

Proof : We first give a lower bound of ϕj . Let ψ ∈ E(X , θ) be the
unique solution of the following equation MAθ(ψ) = eψµ. Set û := Pθ,µu.
We claim that for any j ≥ 1,

ϕj ≥ (1− 1/j)û + (1/j)(ψ − n log j + inf
X

u).

Indeed it’s enough to show that the right hand side is a pluripotential
subsolution of the equation (2) and then apply the Comparison Principle.

To conclude the proof we only need to show that ϕj → û in L1(X ).
Thanks to the previous lower bound, it’s enough to prove that
lim supj ϕj ≤ û in X .
Indeed let us fix ε > 0 and consider the sets

Aj := {x ∈ X ;ϕj(x)− u(x) ≥ ε}.
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Approximation of upper envelopes

From the equation (2) we see that for any j ≥ 1,

µ(Aj) ≤ e−εj
∫
X
e j(ϕj−u)µ ≤ e−εj

∫
X
MA(ϕj) = e−εj .

Then

µ(∪k≥jAk) ≤ e−εj

1− e−ε
.

This means that the set A := ∩j≥1(∪k≥jAk) satisfies µ(A) = 0 and for any
x ∈ X \ A, we have

lim sup
j→+∞

ϕj(x) ≤ ε.

This sows that lim supj→+∞ ϕj(x) ≤ u(x), µ-a.e. in X . Hence
(lim supϕj)

∗ ≤ Pθ,µ in X .
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Viscosity versus Pluripotentiel supersolution

Viscosity concepts

We fix a continuous positive function f > 0 in X and consider the
following complex Monge-Ampère equation

(θ + ddcϕ)n = eϕfdV . (3)

Definition

1. A bounded upper semi-continuous function u : X −→ R is said to be a
viscosity subsolution to the equation (3) if for any point a ∈ X and any
smooth local upper test function q ≥a u for u at the point a, we have

(θ + ddcq)n(a) ≥ eq(a)f (a)dV (a).

2. A bounded lower semi-continuous function v : XT → R is a viscosity
supersolution to the equation (3) if for any point a ∈ X and any smooth
local lower test function q ≤a v for v at the point a, we have

(θ(a) + ddcq(a))n+ ≤ eq(a)f (a)dV (a).
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Viscosity versus Pluripotentiel supersolution

The supersolution theorem

It’s known that a bounded upper semi-continuous function u : X −→ R is
a viscosity subsolution of the equation(3) iff u is a (θ-psh in X )
subsolution of the equation (see [EGZ11]).

Our second main result concerns supersolutions.

Theorem (GLZ17)

Let µ = fdV be a volume form with continuous positive density f > 0 and
let v : X −→ R be a bounded lower semi-continuous function in X .
If v is a viscosity supersolution of the Monge-Ampère equation (3), then
ϕ := Pθv is a pluripotential supersolution to this equation.

Sketch of the proof : Apply the approximation theorem and get a sequence
(ϕj) of solutions to the following equations

(θ + ddcϕj)
n = e j(ϕj−v)eϕjdV = e(j+1)(ϕj−v)ev fdV .
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Viscosity versus Pluripotentiel supersolution

Then we know that ϕj → Pθ,µv = Pθv , where µ := ev fdV .
Observe that ϕj is a viscosity subsolution to the equation (3). By the
viscosity Comparison Principle ( [EGZ11], [EGZ17]) we conclude that
ϕj ≤ v on a Zariski open subset of X , hence ϕj ≤ Pθv in X and then
(θ + ddcϕj)

n ≤ ev fdV in the pluripotential sense on X .

We know by the approximation theorem that actually (ϕj) converges in
capacity to Pθv and we have a uniform minorant in E(X , θ).

Therefore we can pass to the limit and get (θ + ddcϕj)
n → (θ + ddcPθv)n

in the weak sense of currents on X , which implies that
(θ + ddcPθv)n ≤ ev fdV in the pluripotential sense on X .

We can actually prove that (ϕj) is a non decreasing sequence, and the
conclusion follows from Bedford-Taylor convergence theorem.
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Solving Degenerate CMA equations

The Minimum Principle

Here we want to consider the following degenerate complex
Monge-Ampère equation

(θ + ddcϕ)n = eϕµ, (4)

where µ is a positive non pluripolar Borel measure (volume form) on an
open set Ω ⊂ X with µ(Ω) = +∞. We may assume that Ω ⊂ Amp (θ).

We would like to solve the above equation by considering its ”minimal
supersolution”.
Observe that if u, v ∈ E(X , θ) are two pluripotential supersolutions of the
equation (4) then inf(u, v) may not be a supersolution since it may not be
θ-psh anymore. However we can prove the following fact :

The Minimum Principle : If u, v ∈ E(X , θ) are two pluripotential
supersolutions of the equation (4), then the function
w := Pθ(u, v) = Pθ(inf(u, v)) is a pluripotential subsolution of the
equation (4).
When u, v are smooth, this was proved by T. Darvas. Our proof uses the
approximation theorem
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Solving Degenerate CMA equations

Solution to degenerate CMA equations

Now we can state our third main result.

Theorem (GLZ17)

Assume that the equation (4) admits a subsolution i.e. there exists
u0 ∈ E(X , θ) such that

(θ + ddcu0)n ≥ eu0µ,

in the weak sense of currents on X . Set

ϕ := inf{ψ;ψ ∈ E(X , θ),MAθ(ψ) ≤ 1Ωe
ψµ}.

Then ϕ ∈ E(X , θ) is the unique solution to the complex Monge-Ampère
equation (4) i.e. MAθ(ϕ) = 1Ωe

ϕµ.
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Solving Degenerate CMA equations

Proof : 1) We first prove that there is at least one supersolution to the
equation (4). Indeed let K ⊂ X be a compact subset such that
0 < µ(K ) < +∞ and let φK ∈ E(X , θ) be a solution of the equation
MAθ(φK ) = eφKµK , where µK := 1Kµ is finite non pluripolar positive
Borel measure on X . Then φK is a pluripotential supersolution to the
equation (4).

2) Apply the comparison principle (which still holds in this general
situation) to get the inequality u0 ≤ ϕ ≤ ϕK in X .
By classical arguments, ϕ is an infimum of a countable sequence of
supersolutions (ψ)j . By the minimum principle we can assume that the
sequence (ψ)j is non decreasing and converges to ϕ ≥ u0 in X , hence
ϕ ∈ E(X , θ).
3) We need to show that MAθ(ϕ) ≤ 1Ωe

ϕµ in the pluripotential sense on
X .

Ahmed Zeriahi (IMT) PSH Envelopes and Supersolutions Septembre, 2018 21 / 30



Solving Degenerate CMA equations

Proof : 1) We first prove that there is at least one supersolution to the
equation (4). Indeed let K ⊂ X be a compact subset such that
0 < µ(K ) < +∞ and let φK ∈ E(X , θ) be a solution of the equation
MAθ(φK ) = eφKµK , where µK := 1Kµ is finite non pluripolar positive
Borel measure on X . Then φK is a pluripotential supersolution to the
equation (4).

2) Apply the comparison principle (which still holds in this general
situation) to get the inequality u0 ≤ ϕ ≤ ϕK in X .

By classical arguments, ϕ is an infimum of a countable sequence of
supersolutions (ψ)j . By the minimum principle we can assume that the
sequence (ψ)j is non decreasing and converges to ϕ ≥ u0 in X , hence
ϕ ∈ E(X , θ).
3) We need to show that MAθ(ϕ) ≤ 1Ωe

ϕµ in the pluripotential sense on
X .

Ahmed Zeriahi (IMT) PSH Envelopes and Supersolutions Septembre, 2018 21 / 30



Solving Degenerate CMA equations

Proof : 1) We first prove that there is at least one supersolution to the
equation (4). Indeed let K ⊂ X be a compact subset such that
0 < µ(K ) < +∞ and let φK ∈ E(X , θ) be a solution of the equation
MAθ(φK ) = eφKµK , where µK := 1Kµ is finite non pluripolar positive
Borel measure on X . Then φK is a pluripotential supersolution to the
equation (4).

2) Apply the comparison principle (which still holds in this general
situation) to get the inequality u0 ≤ ϕ ≤ ϕK in X .
By classical arguments, ϕ is an infimum of a countable sequence of
supersolutions (ψ)j . By the minimum principle we can assume that the
sequence (ψ)j is non decreasing and converges to ϕ ≥ u0 in X , hence
ϕ ∈ E(X , θ).

3) We need to show that MAθ(ϕ) ≤ 1Ωe
ϕµ in the pluripotential sense on

X .

Ahmed Zeriahi (IMT) PSH Envelopes and Supersolutions Septembre, 2018 21 / 30



Solving Degenerate CMA equations

Proof : 1) We first prove that there is at least one supersolution to the
equation (4). Indeed let K ⊂ X be a compact subset such that
0 < µ(K ) < +∞ and let φK ∈ E(X , θ) be a solution of the equation
MAθ(φK ) = eφKµK , where µK := 1Kµ is finite non pluripolar positive
Borel measure on X . Then φK is a pluripotential supersolution to the
equation (4).

2) Apply the comparison principle (which still holds in this general
situation) to get the inequality u0 ≤ ϕ ≤ ϕK in X .
By classical arguments, ϕ is an infimum of a countable sequence of
supersolutions (ψ)j . By the minimum principle we can assume that the
sequence (ψ)j is non decreasing and converges to ϕ ≥ u0 in X , hence
ϕ ∈ E(X , θ).
3) We need to show that MAθ(ϕ) ≤ 1Ωe

ϕµ in the pluripotential sense on
X .

Ahmed Zeriahi (IMT) PSH Envelopes and Supersolutions Septembre, 2018 21 / 30



Solving Degenerate CMA equations

This is clear by the convergence theorem on the open set Ω since µ has
locally finite mass in Ω. The delicate point is to show that MAθ(ϕ) is
concentrated in Ω. Here we will use the subsolution u0 in a crucial way.

Since eu0µ ≤ MAθ(u0) we dedude that the measure µ0 := eu0µ has finite
mass in X and we have for any j

eu0MAθ(ψj) ≤ 1Ωe
ψjµ0,

in the sens of Radon measures on X .

Now we can pass to the limit and get the inequality eu0MAθ(ϕ) ≤ 1Ωe
ϕµ0

in the sens of Radon measures on X , which imples that MAθ(ϕ) is
concentrated in Ω since µ({u0 = −∞}) = 0.

4) The last step is to show that MAθ(ϕ) = 1Ωe
ϕµ. This is a local

property. Fix a small open set B b Ω. We will prove that MAθ(ϕ) = eϕµ
weakly on B. We construc a supersolution ψ smaller that ϕ which solves
the equation on B. Then ψ = ϕ will solve the equation on B.
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Solving Degenerate CMA equations

This is usually done by a balayage process solving a local Dirichlet problem
with boundary values ϕ on a small ball B and gluying the local solution
with ϕ (delicate analysis near the boundary).

We will use a new global balayage method which is simpler. Namely we
solve the equation

MA(ψ) = 1Ω\Be
ψ−ϕ)MA(ϕ) + 1Be

ψµ = eψν, (5)

where ν := 1Ω\Be
−ϕMA(ϕ) + 1Bµ is a Borel measure which a priori need

not have a finite mass.
However we can approximate ν by an increasing sequence of non pluripolar
measures of finite masses on X defined by

νj := 1Ω\Be
−max(ϕ,−j)MA(ϕ) + 1Bµ

and solve the corresponding equations :

MA(ψj) = 1Ω\Be
ψj−max(ϕ,−j))MA(ϕ) + 1Be

ψjµ = eψjν. (6)
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Solving Degenerate CMA equations

By the comparison principle, the sequence (ψj) decreases to a function
ψ ≥ u0 since u0 is a subsolution of these equations.

We claim that ψ solves the equation (5). Assume this is the case. Then
observe that ϕ is a supersolution of the equation (5) and then by the
comparison principle it follows that ψ ≤ ϕ in X .

On the other hand ψ is a supersolution to the equation (4) and then
ϕ ≤ ψ by minimality. Thus ϕ = ψ.

It remains to prove that ψ is a solution to the equation (5). The inequality
≥ follows from Fatou’s lemma and equality follows from the fact that the
masses coincide.
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Solving Degenerate CMA equations

Kähler-Einstein metrics

Let us give a geometric situation where this theorem applies.
Let Y be an algebraic variety with mild singularities. We assume that the
canonical bundle KY := ∧n(T 1,0X )∗ is ample meaning that it has a
hermitian metric with positive Ricci curvature i.e. there exists a Kähler
metric ωY on Y such that ωY ∈ c1(KY ) = −c1(Y ).

We look for a Kähler-Einstein metric ω̃ on Y i.e. Ric (ω̃) = −ω̃.

Let π : X −→ Y a smooth resolution of Y and let θ := π∗(ωY ). Then the
Kähler-Einstein equation Ric (ω̃) = −ω̃ on Y is equivalent to a complex
Monge-Ampère on X

MAθ(ϕ) = eϕµ,

where µ := fdV , and f ≥ 0 is a density which is smooth on
X \ D := π−1(Yreg ) and may vanish or blow up along the divisor
D := π−1(Ysing ).
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Solving Degenerate CMA equations

The way how f blows up depends on the type of singularities of Y . The
case of klt singularities corresponds to the case when f ∈ L1+ε(X ) and has
been studied in [EGZ09,BBEGZ10].

The most delicate case is when Y has semi-log canonical singularties i.e.
f ≤ C |sD |−2, where sD is a defining holomorphic section for D i.e.
D = {sD = 0}. This case was recently studied by Guenancia and Berman.
Let us see how to apply our theorem to solve the above corresponding
equation.

Here f /∈ L1(X ) but we have a subsolution of the equation : take
u0 := −(− log |sD |−2)a, where 0 < a < 1 and sD is appropriately
normalized.

Then we can apply our theorem to obtain

Corollary

Let Y be an algebraic variety with semi-log canonical singularties such
that KY is ample. Then there exists a Kähler metric ωKE on Yreg such
that RicωKE = −ωKE . Moreover the current ωKE extends as a positive
closed current on X with finite energy potential on X .
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(ddc)n, J. Funct. Anal. 72 (1987), no. 2, 225–251.

[Ber13] R.J. Berman, From Monge-Ampère equations to envelopes
and geodesic rays in the zero temperature limit,
https://arxiv.org/abs/1307.3008arXiv:1307.3008.

[Ber13] R.J. Berman, S. Boucksom : Growth of balls of holomorphic
sections and energy at equilibrium, arXiv:0803.1950

[BEGZ10] S. Boucksom, P. Eyssidieux, V. Guedj, A. Zeriahi,
Monge-Ampère equations in big cohomology classes, Acta Math.
(2010), Volume 205, Issue 2, pp 199–262.Ahmed Zeriahi (IMT) PSH Envelopes and Supersolutions Septembre, 2018 27 / 30



Solving Degenerate CMA equations

[BG13] R.J. Berman, H. Guenancia : Kähler-Einstein metrics on
stable varieties and log canonical pairs, arXiv:1304.2087v2

[CIL92] M. Crandall, H. Ishii, P.L. Lions : User’s guide to viscosity
solutions of second order partial differential equations Bull. Amer.
Math. Soc. 27 (1992), 1–67.
[Dar14] T. Darvas : The Mabuchi completion of the space of Kähler

potentials, Amer. J. Math. 139 (2017), no. 5, 1275-1313.
arXiv:1401.7318
[DR16] T. Darvas, Y. Rubinstein : Kiselman’s principle, the Dirichlet

problem for the Monge-Ampre equation, and rooftop obstacle
problems. J. Math. Soc. Japan 68 (2016), no. 2, 773796.

[EGZ09] P. Eyssidieux, V. Guedj, A. Zeriahi : Singular
Kähler-Einstein metrics, J. Amer. Math. Soc. 22 (2009), 607–639.

[EGZ11] P. Eyssidieux, V. Guedj, A. Zeriahi : Viscosity solutions to
Degenerate Complex Monge-Ampère Equations, Comm. Pure Appl.
Math. 64 (2011), no. 8, 1059–1094.

[GZ07] V. Guedj, A. Zeriahi : The weighted Monge-Ampère
energy of quasiplurisubharmonic functions, J. Funct. Anal. 250
(2007), no. 2, 442–482.Ahmed Zeriahi (IMT) PSH Envelopes and Supersolutions Septembre, 2018 28 / 30



Solving Degenerate CMA equations

[GZbook] V. Guedj, A. Zeriahi : Degenerate Complex
Monge-Ampère Equations. EMS Tracts in Mathematics, Vol. 26,
2017.

[HL09] F.R. Harvey, H.B. Lawson : Dirichlet duality and the
nonlinear Dirichlet problem, Comm. Pure Appl. Math. 62 (2009), no.
3, 396–443.

[Kol98] S. Kolodziej : The complex Monge-Ampère equation, Acta
Math. 180 (1998), no. 1, 69–117.

[Kol03] S. Kolodziej : The Monge-Ampère equation on compact
Kähler manifolds, Indiana Univ. Math. J. 52 (2003), 667–686.

J. Roos, D. Witt-Nyström : Envelopes with prescribed singularities,
arXiv:1210.2220v2

[Yau78] S.T. Yau :On the Ricci curvature of a compact Kähler
manifold and the complex Monge-Ampère equation, Comm. Pure
Appl. Math. 31, 339–441 (1978).

Ahmed Zeriahi (IMT) PSH Envelopes and Supersolutions Septembre, 2018 29 / 30



Solving Degenerate CMA equations

Thank you for your attention

and

Good luck for SMMER

Ahmed Zeriahi (IMT) PSH Envelopes and Supersolutions Septembre, 2018 30 / 30


	Introduction and motivations
	Approximation of Envelopes
	Approximation of upper envelopes
	Viscosity versus Pluripotentiel supersolution
	Solving Degenerate CMA equations

