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This presentation is a synthesis on my contributions that I have made
on the subject of the amenability to algebraic and analytical

perspective since 2003.
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Banach algebras

→ A Banach algebra A is a Banach space provided a compatible
product with other operations and the norm ‖.‖ satisfying for all
a, b ∈ A,

‖a.b‖ ≤ ‖a‖‖b‖.

• C(X) with X a compact set. ‖f‖∞ = sup{|f (x)|, x ∈ X}.

• B(H), K(H) with H a Hilbert space.
‖T‖ = sup{‖T(x)‖, ‖x‖ = 1, x ∈ H}

• For each T ∈ B(H), Let AT = span{P(T),P ∈ C[X]}‖ ‖.

• A disc algebra A(D).

→ A C∗-algebra (A, ‖.‖, ∗) is a Banach algebra with an involution such
that for all a ∈ A,

‖a.a∗‖ = ‖a‖2.

Rachid El Harti University Hassan I. Settat. Morocco The amenability to algebraic and analytical perspective and some contributions



Banach algebras

→ A Banach algebra A is a Banach space provided a compatible
product with other operations and the norm ‖.‖ satisfying for all
a, b ∈ A,

‖a.b‖ ≤ ‖a‖‖b‖.

• C(X) with X a compact set. ‖f‖∞ = sup{|f (x)|, x ∈ X}.

• B(H), K(H) with H a Hilbert space.
‖T‖ = sup{‖T(x)‖, ‖x‖ = 1, x ∈ H}

• For each T ∈ B(H), Let AT = span{P(T),P ∈ C[X]}‖ ‖.

• A disc algebra A(D).

→ A C∗-algebra (A, ‖.‖, ∗) is a Banach algebra with an involution such
that for all a ∈ A,

‖a.a∗‖ = ‖a‖2.

Rachid El Harti University Hassan I. Settat. Morocco The amenability to algebraic and analytical perspective and some contributions



Banach algebras

→ A Banach algebra A is a Banach space provided a compatible
product with other operations and the norm ‖.‖ satisfying for all
a, b ∈ A,

‖a.b‖ ≤ ‖a‖‖b‖.

• C(X) with X a compact set. ‖f‖∞ = sup{|f (x)|, x ∈ X}.

• B(H), K(H) with H a Hilbert space.
‖T‖ = sup{‖T(x)‖, ‖x‖ = 1, x ∈ H}

• For each T ∈ B(H), Let AT = span{P(T),P ∈ C[X]}‖ ‖.

• A disc algebra A(D).

→ A C∗-algebra (A, ‖.‖, ∗) is a Banach algebra with an involution such
that for all a ∈ A,

‖a.a∗‖ = ‖a‖2.

Rachid El Harti University Hassan I. Settat. Morocco The amenability to algebraic and analytical perspective and some contributions



Banach algebras

→ A Banach algebra A is a Banach space provided a compatible
product with other operations and the norm ‖.‖ satisfying for all
a, b ∈ A,

‖a.b‖ ≤ ‖a‖‖b‖.

• C(X) with X a compact set. ‖f‖∞ = sup{|f (x)|, x ∈ X}.

• B(H), K(H) with H a Hilbert space.
‖T‖ = sup{‖T(x)‖, ‖x‖ = 1, x ∈ H}

• For each T ∈ B(H), Let AT = span{P(T),P ∈ C[X]}‖ ‖.

• A disc algebra A(D).

→ A C∗-algebra (A, ‖.‖, ∗) is a Banach algebra with an involution such
that for all a ∈ A,

‖a.a∗‖ = ‖a‖2.

Rachid El Harti University Hassan I. Settat. Morocco The amenability to algebraic and analytical perspective and some contributions



Banach algebras

→ A Banach algebra A is a Banach space provided a compatible
product with other operations and the norm ‖.‖ satisfying for all
a, b ∈ A,

‖a.b‖ ≤ ‖a‖‖b‖.

• C(X) with X a compact set. ‖f‖∞ = sup{|f (x)|, x ∈ X}.

• B(H), K(H) with H a Hilbert space.
‖T‖ = sup{‖T(x)‖, ‖x‖ = 1, x ∈ H}

• For each T ∈ B(H), Let AT = span{P(T),P ∈ C[X]}‖ ‖.

• A disc algebra A(D).

→ A C∗-algebra (A, ‖.‖, ∗) is a Banach algebra with an involution such
that for all a ∈ A,

‖a.a∗‖ = ‖a‖2.

Rachid El Harti University Hassan I. Settat. Morocco The amenability to algebraic and analytical perspective and some contributions



Banach algebras

→ A Banach algebra A is a Banach space provided a compatible
product with other operations and the norm ‖.‖ satisfying for all
a, b ∈ A,

‖a.b‖ ≤ ‖a‖‖b‖.

• C(X) with X a compact set. ‖f‖∞ = sup{|f (x)|, x ∈ X}.

• B(H), K(H) with H a Hilbert space.
‖T‖ = sup{‖T(x)‖, ‖x‖ = 1, x ∈ H}

• For each T ∈ B(H), Let AT = span{P(T),P ∈ C[X]}‖ ‖.

• A disc algebra A(D).

→ A C∗-algebra (A, ‖.‖, ∗) is a Banach algebra with an involution such
that for all a ∈ A,

‖a.a∗‖ = ‖a‖2.

Rachid El Harti University Hassan I. Settat. Morocco The amenability to algebraic and analytical perspective and some contributions



Banach algebras

→ A Banach algebra A is a Banach space provided a compatible
product with other operations and the norm ‖.‖ satisfying for all
a, b ∈ A,

‖a.b‖ ≤ ‖a‖‖b‖.

• C(X) with X a compact set. ‖f‖∞ = sup{|f (x)|, x ∈ X}.

• B(H), K(H) with H a Hilbert space.
‖T‖ = sup{‖T(x)‖, ‖x‖ = 1, x ∈ H}

• For each T ∈ B(H), Let AT = span{P(T),P ∈ C[X]}‖ ‖.

• A disc algebra A(D).

→ A C∗-algebra (A, ‖.‖, ∗) is a Banach algebra with an involution such
that for all a ∈ A,

‖a.a∗‖ = ‖a‖2.

Rachid El Harti University Hassan I. Settat. Morocco The amenability to algebraic and analytical perspective and some contributions



Operator algebras

→ A is called an operator algebra if A ⊆ B(H) is an algebra, closed
under the norm topology, for some Hilbert space H.

For a locally compact group G, a unitary representation π on some
Hilbert space H is continuous homomorphism into the unitary group
U of B(H).

λ : G −→ B(L2(G)), (λ(t)(f ))(h) = f (h−1t) is called left regular
representation.

π̃ : L1(G) −→ B(H) π̃(f ) =
∫

G f (t)π(t)dµ(t) f ∈ L1(G).

On L1(G), consider ‖f‖1 =
∫

G |f (t)|dµ(t), ‖f‖λ = ‖λ(f )‖B(L2(G)),
‖f‖∗ = sup{ ‖π̃(f )‖π, π ∈ Ĝ }.

• (L1(G), ‖ ‖1), C∗(G) = L1(G)
‖ ‖∗

, C∗r (G) = L1(G)
‖ ‖λ .
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More examples

• Cb(G), Big algebra Big(G), Group von Neumann algebra VN(G),
Measure algebra M(G), The Fourier-Steiljes algebra

B(G) = {u ∈ Cb(G) : u =< π(.)ξ, η > for some π ∈ Ĝ, ξ, η ∈ Hπ}.

• The Fourier algebra

A(G) = {u =< λ(.)ξ, η >, λ left regular representation, ξ, η ∈ L2(G)}‖ ‖B(G) .

‖u‖A(G) := ‖u‖B(G) = inf{‖ξ‖2‖η‖2 : ξ, η ∈ L2(G)}.

• L1(G)
∗
= L∞(G), C∗(G)

∗
= B(G), A(G)

∗
= vN(G),

M(G) = C0(G)
∗.
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Algebraic definition and syper amenability

Definition
Let A be a (Banach ) complex algebra. A is called contractible if for
any bimodule X on A, every derivation D : A→ X is inner.

Theorem

A is contratible iff A is semisimple finite dimensional algebra.

Definition
Let A be a Banach complex algebra. A is called syper amenable if for
any Banach bimodule X on A, every bounded derivation D : A→ X is
inner.

Theorem A. Ya. Helemskii

A is commutative syper amenable iff A is semisimple finite dimensional algebra.
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Algebraic definition and super amenability
• No infinte dimesional exemple until yet.
• Helemskii ’s Conjecture : Syper amenable Banach algebra is finte
dimensional.

Theorem El Harti IJMMS 2004

Let A be an syper amenable Banach algebra such that each left maximal ideal is
complemented. then A is semisimple finite dimensional algebra.

1. A syper amenable C*-algebra is finite dimensional algebra.

2. A syper amenable reduced involutive Banach algebra is finite
dimensional algebra.

3. A syper amenable Hermitian involutive Banach algebra is
finite dimensional algebra.

Definition
Let A be a Banach complex algebra. A is called amenable if for any
bimodule X on A, every derivation D : A→ X∗ into the dual of X is
inner.
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dimensional algebra.

3. A syper amenable Hermitian involutive Banach algebra is
finite dimensional algebra.

Definition
Let A be a Banach complex algebra. A is called amenable if for any
bimodule X on A, every derivation D : A→ X∗ into the dual of X is
inner.
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Amenable groups

By John von Neumann in 1929

Definition
An amenable group G is a topological group with a lefy invariant mean
on the algebra Cru(G) of the right uniformely continous functions on G.

• Examples : Compact groups, Abelien groups

The Heisenberg group {

1 a c
0 1 b
0 0 1

 , a, b, c ∈ }

• 0 −→ N −→ G −→ G/N −→ 0.

• Counterexamples : Sl(2,R), Free group F2.

Any discrete group contains free group as a copy.
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Amenable Banach algebras

Theorem B.E. Johnson 1971

A locally compact group G is amenable if and only if for any bimodule X on L1(G),
every derivation D : L1(G) −→ X∗ is inner where X∗ is the dual of X

Johnson in 1972

Definition

A Banach algebra is amenable if for any bimodule X on A, every derivation
D : A −→ X∗ is inner.

• ∀ Banach bimodule X, H1(A,X∗) = {0}.

Examples : K(H), C(X), Cuntz algebras On, L1(G). C∗(G) if G amenable,
C∗(Sl2(R).

Counterexamples ; B(H) with dim(H) =∞, A(G) even if G is amenable. the Disc
Algebra A(D).
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Amenable Group Algebras

Theorem
Let G be a loccaly compact group. Then the following are equivalent :
1. G is amenable.
2. L1(G) is amenable.
3. A(G) has a bounded approximate identity
4. B(G) has an identity.
5. C∗(G) = C∗r (G) and amenable.

A bounded approximate identity is a bounded net {eα}α∈I in A with
that ‖eα‖ ≤ K for some real K and

lim
α

eαa = lim
α

aeα = a, a ∈ A.
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Stability Properties

Note : Every closed tow-sided ideal J with a bounded approximate
identity in an amenable Banach algebra A is amenable.

Theorem R. El Harti 2010. J.O.M
Every closed two sided ideal J of an amenable operator algebra has a
bounded approximate identity.

• So, Every closed tow-sided ideal J of an amenable operator algebra
A is amenable.

• The amenability passes to quotient A/J.

• 0 −→ J −→ A −→ A/J −→ 0.
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Finite dimensional case

Theorem
Let A be a finite dimensional algebra, Then the following are
equivalent :
1. A is amenable.
2. A is semisimple.
3. A has a diagonal. 3 d ∈ A⊗ A such that ad = da for each a ∈ A and
π(d) = 1 where π;A⊗ A→ A.
4.

A ≡Mn1(C)⊕Mn1(C⊕ .......⊕Mnk(C

.

The semisimplicitty Rad(A) = {0}.

The strongly semisimplicity A is a direct sum of simple algebras.
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Problems

Natural Question : If dim(A) = +∞

Amenability � Smisimplicity

Answer : No
← B(H) with dim(H) = +∞ semisimple but not amenable.

→ By Read ∃ a radical amenable Banach algebra wich is not an
operator algebra.
• Is an amenable operator algebra semisimple ?

Definition
A Banach algebra A satisfies to Wedderburn property (W) if for each
a closed two sided ideal I which is complemented as a Banach
space. There is a closed two sided ideal J such that A = I ⊕ J.
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Main theorem

Theorem : R. El Harti and P. Pinto. Arckiv Math. July 2013

Let A be a reflexive amenable operator algebra. Then it is semisimple
with property (W). In this case, it is a finite direct sum of simple
Banach algebras of operators.

Proof : First show that every closed ideal of an operator algebra has b.a.i.
Let π : A→ B(H) be a bounded representation of A on some Hilbert space H. Let M be a closed
invariant subspace of π(A) and take the following admissible short sequence

0 −→ M −→ H → H/M −→ 0.

By [Curtis], this sequence splits, therefore A has the total reduction property. It follows from

[RElHarti] that every closed two-sided ideal of A has a bounded approximate identity. Therefore the

result is now an easy consequence of the following results .
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main resultls

Lemma 1.
Let A be a reflexive operator algebra such that every maximal two
sided ideal of A has a bounded approximate identity. Then every
primitive ideal of A is maximal.

Proof : Let P be a primitive ideal. Then B := A/P is a primitive operator algebra. Is B is simple ? For
a maximal two-sided ideal MB in B. Then MB has a bounded approximate identity (since
MB = (MA + P)/P for some maximal two-sided ideal MA in A).

Then MB
w∗ is a two-sided ideal in B∗∗ and MB

w∗
= B∗∗p with p ∈ B∗∗ some central idempotent

[Effros]. Besides this,

B∗∗
= B∗∗p⊕ B∗∗

(1B∗∗ − p), (1)

Since the reflexivity property passes to quotients we have that B is also reflexive. Thus from (1) we

conclude that B = Bp⊕ B(1− p) with Bp and B(1− p) being two-sided ideals in B. However every

non-trivial two-sided ideal in the primitive algebra B is essential (an ideal I is said to be essential if

I ∩ J is non-trivial for all non-trivial ideal J. It follows that Bp = {0} or B(1− p) = {0}. Since

MB = Bp 6= B and p 6= 1 we conclude that Bp = {0}. Hence MB = {0} and so B is simple.
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Main results

Lemma 2.
Let A be a reflexive operator algebra such that each maximal two
sided ideal has a bounded approximate identity. Then A is
semisimple. Moreover, A is a finite direct sum of simple operator
algebras.

Proof : Let ΠA be the space of all primitive ideals in A equipped with the hull kernel topology. If
P ∈ ΠA, then P is maximal by Lemma. Therefore P has a bounded approximate identity and
P∗∗ = A∗∗p for some central idempotent p by [Effros]. Since A is reflexive, P = Ap. Using the same
argument in [Galé Ransford, White], we conclude that ΠA is discrete and compact. Hence ΠA is a
finite set, say ΠA = {P1, ..., Pn} with central idempotents p1, ..., pn, respectively. It is easy to check
that

A = Ap1p2...pn ⊕
n⊕

i=1

A(1− pi), Rad(A) = Ap1p2...pn =

n⋂
i=1

Api.

Therefore Rad(A) = {0} and A(1− pi) is a minimal two sided ideal (for every i = 1, ..., n). Thus A

is semisimple and moreover A is a finite direct sum of simple algebras.
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argument in [Galé Ransford, White], we conclude that ΠA is discrete and compact. Hence ΠA is a
finite set, say ΠA = {P1, ..., Pn} with central idempotents p1, ..., pn, respectively. It is easy to check
that

A = Ap1p2...pn ⊕
n⊕

i=1

A(1− pi), Rad(A) = Ap1p2...pn =

n⋂
i=1

Api.

Therefore Rad(A) = {0} and A(1− pi) is a minimal two sided ideal (for every i = 1, ..., n). Thus A

is semisimple and moreover A is a finite direct sum of simple algebras.

Rachid El Harti University Hassan I. Settat. Morocco The amenability to algebraic and analytical perspective and some contributions



Main results

Lemma 2.
Let A be a reflexive operator algebra such that each maximal two
sided ideal has a bounded approximate identity. Then A is
semisimple. Moreover, A is a finite direct sum of simple operator
algebras.

Proof : Let ΠA be the space of all primitive ideals in A equipped with the hull kernel topology. If
P ∈ ΠA, then P is maximal by Lemma. Therefore P has a bounded approximate identity and
P∗∗ = A∗∗p for some central idempotent p by [Effros]. Since A is reflexive, P = Ap. Using the same
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Main result : Commutative case

Theorem. (Rachid,Pnto)

If A0
T amenable and contains a non trivial compact operator K, then T

is non quasinilpotent.

Proof : • We show that TK 6= 0. Indeed, if that is not the case, then since K ∈ A0
T , K is a limit of

polynomial Pn(T) with Pn(0) = 0. So K2 is the limit of Pn(T)K. Note now that Pn(T)K = 0 for all n,
so K2 = 0 thus K is nilpotent. This implies that A0

K is finite dimensional amenable algebra and thus
it is semisimple algebra. Therefore K = 0
• So since TK 6= 0, there exists a trace-class operator N ∈ C(H) such that tr(TKN) 6= 0. Let DN be
the derivation from A0

T to (A0
TK)ᵀ defined by DN(A) := NA− AN for all A ∈ A0

T ⊆ B(H) = C(H)∗,
where (A0

TK)ᵀ is the annihilator of A0
TK taken in C(H) (note that A0

TK ⊆ A0
T , so

D : A0
T → (A0

T )ᵀ ⊆ (A0
TK)ᵀ). Besides this, (A0

TK)ᵀ is a Banach A0
T -bimodule in C(H). Since A0

T is
amenable DN is inner, so there exists an M ∈ (A0

TK)ᵀ such that DN(A) = MA− AM for all A ∈ A0
T .

This means that KT(N − M) = (N − M)KT and tr(KT(N − M)) = tr((N − M)KT) 6= 0. Hence
σ(KT(N − M)) 6= {0} where σ(KT(N − M)) denotes the spectrum of KT(N − M). Since KT and
N − M commute we have σ(KT(N − M)) ⊆ σ(KT)σ(N − M) and therefore σ(KT) 6= {0}.
Similarly, σ(KT) ⊆ σ(K)σ(T), whence σ(T) 6= {0}. Therefore T is non quasinilpotent.
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Amenable Cross product Banach algebras associated
with a class of dynamical systems.

Let (G, α,A) a discret C∗dynamical System.

l1(G, α,A) = {a : G −→ A such that
∑
g∈G

‖a(g)‖A <∞}.

We supply l1(G, α,A) with

(ab)g =
∑
t∈G

at.αt(bt−1g) (g ∈ G, a, b ∈ l1(G, α,A))

and
a∗g = αg((ag−1)∗).

l1(G, α,A) become a Banach algebra with an isometry involution.

The envollopng C∗-algebra of l1(G, α,A) is denoted by AXαG and is
called a cross product of A by G.
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Amenable Cross product Banach algebras associated
with a class of dynamical systems.

Two Examples :

1. A = C, then l1(G, triv,C) is the usual group algebra l1(G).

2. G = Z and A = C(X) and consider σ : X −→ X a homeomorphism.
We get a Z-action defined by αn(f ) = f ◦ σ−n.

Theorem. Marcel de Jeu and Jun Tomiyama

L1(Z, σ,C(X)) is semisimple.

Remarks : For any discret C∗- dynamical system (G, α,A), l1(G, α,A)
is semisimple.

A natural Question : When is l1(G, α,A) amenable ?
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Amenable Cross product Banach algebras associated
with a class of dynamical systems.

For g ∈ G, et δg : G −→ A be defined by

δg(t) =
{

1A, if t =g ;
0, if not.

δg ∈ l1(G, α,A) and δe is the identity of l1(G, α,A).

Each element a = (ag)g∈G of l1(G, α,A) can be written in the form∑
g∈G

agδg.

and
αg(a) = δgaδg−1 g ∈ G and a ∈ A

Therefor G acts on the unitary group U of A so that the semidirect
product U nα G can be defined :

(u, g)(v, t) = (uα(g)v, gt).

.
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Amenable Cross product Banach algebras associated
with a class of dynamical systems.

Lemma .

Let (G, α,A) be a C*-dynamical system where A is unital and G is
discrete. The the set {uδg, u ∈ Uandg ∈ G} is a subgroup of invertible
elements of l1(G, α,A) that is canonically isomorphic to the semidirect
product group U nα G. The norm closed linear space of this set
l1(G, α,A).
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Amenable Cross product Banach algebras associated
with a class of dynamical systems.

Theorem : R. El Harti and Marcel de Jeu July 2016

Let (G, α,A) be a C*-dynamical system where A is commutative unital
C*-algebra and G is amenable discrete group. Then l1(G, α,A) is
amenable.
Proof :
1. step

•With G amenable and U is abelian group, we check that U nα G is amenable.

3. step • The canonical isomorphism from UxαG onto the set {uδg, u ∈ U, g ∈ G} can be
extended to a homomorphism from

l1(U nα G) −→ l1(G, α, A)

with dense image.

• Since U nα G is amenable discrete group, By Johnson l1(U nα G).

• The stability of amenability to the image, we have l1(G, α, A) is amenable.
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Open Problem

For any amenable commutative unital C∗-algebra A and discrete
group G, if l1(U nα G) is amenable,
is G is amenable ?
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Merci bien pour votre attention ]
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