The amenability to algebraic and analytical perspective and some contributions

Rachid El Harti University Hassan I. Settat. Morocco

Universitát des Saarlandes, Saarbrúcken Germany 12 / 12/ 2016

This presentation is a synthesis on my contributions that I have made on the **subject of the amenability** to algebraic and analytical perspective since 2003.

- 1. Contractible Frèchet algebras. Proceedings of the American Mathematical Society. Vol 132, Number 5 Pages: 1251-1255 (2003).
- 2. The structure of a subclass of amenable Banach algebras, Int. J. Math. Math. Sc, Volume 2004, 55 (2004) 2963-2969.
- 3. Reduction operator algebras and Generalized Similarity Problem, Operators and Matrices, Volume 4, Number 4, 559-572 (2010).
- 4. The semisimplicity of amenable operator algebras. Archiv der Mathematik August 2013, Volume 101, Issue 2, pp 129-133. (With Paulo Pinto)
- 5. Amenable Cross product Banach algebras associated with a class of dynamical systems. Integral Equation and Operator Theory. 2016 (with Marcel de Jeu)

$$||a.b|| \le ||a|| ||b||.$$

- C(X) with X a compact set. $||f||_{\infty} = \sup\{|f(x)|, x \in X\}.$
- B(H), K(H) with H a Hilbert space.

$$||T|| = \sup\{||T(x)||, ||x|| = 1, x \in H\}$$

- For each $T \in B(H)$, Let $A_T = \overline{span\{P(T), P \in \mathbb{C}[X]\}^{\|\cdot\|}}$.
- A disc algebra A(D).
- \rightarrow A C*-algebra $(A, \|.\|, *)$ is a Banach algebra with an involution such that for all $a \in A$,

$$||a.a^*|| = ||a||^2.$$

$$||a.b|| \le ||a|| ||b||.$$

- C(X) with X a compact set. $||f||_{\infty} = \sup\{|f(x)|, x \in X\}.$
- B(H), K(H) with H a Hilbert space.

$$||T|| = \sup\{||T(x)||, ||x|| = 1, x \in H\}$$

- For each $T \in B(H)$, Let $A_T = \overline{span\{P(T), P \in \mathbb{C}[X]\}^{\|\cdot\|}}$.
- A disc algebra A(D).
- \rightarrow A C*-algebra (A, ||.||, *) is a Banach algebra with an involution such that for all $a \in A$,

$$||a.a^*|| = ||a||^2.$$

$$||a.b|| \le ||a|| ||b||.$$

- C(X) with X a compact set. $||f||_{\infty} = \sup\{|f(x)|, x \in X\}.$
- B(H), K(H) with H a Hilbert space. $||T|| = \sup\{||T(x)||, ||x|| = 1, x \in H\}$
- For each $T \in B(H)$, Let $A_T = \overline{span\{P(T), P \in \mathbb{C}[X]\}^{\|\cdot\|}}$.
- A disc algebra A(D).
- \rightarrow A C*-algebra (A, ||.||, *) is a Banach algebra with an involution such that for all $a \in A$,

$$||a.a^*|| = ||a||^2.$$

$$||a.b|| \le ||a|| ||b||.$$

- C(X) with X a compact set. $||f||_{\infty} = \sup\{|f(x)|, x \in X\}.$
- \bullet B(H), K(H) with H a Hilbert space.

$$||T|| = \sup\{||T(x)||, ||x|| = 1, x \in H\}$$

- For each $T \in B(H)$, Let $A_T = span\{P(T), P \in \mathbb{C}[X]\}^{\parallel \parallel}$.
- A disc algebra A(D).
- \rightarrow A C*-algebra $(A, \|.\|, *)$ is a Banach algebra with an involution such that for all $a \in A$,

$$||a.a^*|| = ||a||^2.$$

$$||a.b|| \le ||a|| ||b||.$$

- C(X) with X a compact set. $||f||_{\infty} = \sup\{|f(x)|, x \in X\}.$
- \bullet B(H), K(H) with H a Hilbert space.

$$||T|| = \sup\{||T(x)||, ||x|| = 1, x \in H\}$$

- ullet For each $T\in B(H)$, Let $A_T=span\{P(T),P\in\mathbb{C}[X]\}^{\parallel \ \parallel}.$
- A disc algebra A(D).
- \rightarrow A C*-algebra (A, ||.||, *) is a Banach algebra with an involution such that for all $a \in A$,

$$||a.a^*|| = ||a||^2.$$

$$||a.b|| \le ||a|| ||b||.$$

- C(X) with X a compact set. $||f||_{\infty} = \sup\{|f(x)|, x \in X\}.$
- B(H), K(H) with H a Hilbert space.
- $||T|| = \sup\{||T(x)||, ||x|| = 1, x \in H\}$
- For each $T \in B(H)$, Let $A_T = span\{P(T), P \in \mathbb{C}[X]\}^{\parallel \parallel}$.
- A disc algebra $\mathbb{A}(D)$.
- \rightarrow A C*-algebra (A, ||.||, *) is a Banach algebra with an involution such that for all $a \in A$,

$$||a.a^*|| = ||a||^2.$$

$$||a.b|| \le ||a|| ||b||.$$

- C(X) with X a compact set. $||f||_{\infty} = \sup\{|f(x)|, x \in X\}.$
- B(H), K(H) with H a Hilbert space.

$$||T|| = \sup\{||T(x)||, ||x|| = 1, x \in H\}$$

- ullet For each $T\in B(H)$, Let $A_T=span\{P(T),P\in\mathbb{C}[X]\}^{\parallel \ \parallel}.$
- A disc algebra $\mathbb{A}(D)$.
- \rightarrow A C*-algebra (A, ||.||, *) is a Banach algebra with an involution such that for all $a \in A$,

$$||a.a^*|| = ||a||^2.$$

 \to A is called an operator algebra if $A\subseteq B(H)$ is an algebra, closed under the norm topology, for some Hilbert space H.

For a locally compact group G, a unitary representation π on some Hilbert space H is continuous homomorphism into the unitary group \mathcal{U} of B(H).

 $\lambda: G \longrightarrow B(L^2(G)), \ \ (\lambda(t)(f))(h) = f(h^{-1}t)$ is called left regular representation.

$$\tilde{\pi}: L^1(G) \longrightarrow B(H) \ \tilde{\pi}(f) = \int_G f(t)\pi(t)d\mu(t) \ f \in L^1(G).$$

On
$$L^1(G)$$
, consider $||f||_1 = \int_G |f(t)| d\mu(t)$, $||f||_{\lambda} = ||\lambda(f)||_{B(L^2(G))}$, $||f||_* = \sup\{ ||\tilde{\pi}(f)||_{\pi}, \ \pi \in \hat{G} \}.$

$$\bullet \; (L^1(G), \|\; \|_1), \; C^*(G) = \overline{L^1(G)}^{\|\; \|_*}, \; C^*_r(G) = \overline{L^1(G)}^{\|\; \|_{\lambda}}.$$

 \rightarrow A is called an operator algebra if $A\subseteq B(H)$ is an algebra, closed under the norm topology, for some Hilbert space H.

For a locally compact group G, a unitary representation π on some Hilbert space H is continuous homomorphism into the unitary group $\mathcal U$ of B(H).

 $\lambda: G \longrightarrow B(L^2(G)), \ \ (\lambda(t)(f))(h) = f(h^{-1}t)$ is called left regular representation.

$$\tilde{\pi}: L^1(G) \longrightarrow B(H) \ \tilde{\pi}(f) = \int_G f(t)\pi(t)d\mu(t) \ f \in L^1(G).$$

On $L^1(G)$, consider $||f||_1 = \int_G |f(t)| d\mu(t)$, $||f||_{\lambda} = ||\lambda(f)||_{B(L^2(G))}$, $||f||_* = \sup\{ \|\tilde{\pi}(f)\|_{\pi}, \ \pi \in \hat{G} \}$.

•
$$(L^{1}(G), \| \|_{1}), C^{*}(G) = \overline{L^{1}(G)}^{\| \|_{*}}, C_{r}^{*}(G) = \overline{L^{1}(G)}^{\| \|_{\lambda}}.$$

 \to A is called an operator algebra if $A\subseteq B(H)$ is an algebra, closed under the norm topology, for some Hilbert space H.

For a locally compact group G, a unitary representation π on some Hilbert space H is continuous homomorphism into the unitary group $\mathcal U$ of B(H).

 $\lambda: G \longrightarrow B(L^2(G)), \ (\lambda(t)(f))(h) = f(h^{-1}t)$ is called left regular representation.

$$\tilde{\pi}: L^1(G) \longrightarrow B(H) \ \tilde{\pi}(f) = \int_G f(t)\pi(t)d\mu(t) \ f \in L^1(G).$$

On $L^1(G)$, consider $||f||_1 = \int_G |f(t)| d\mu(t)$, $||f||_{\lambda} = ||\lambda(f)||_{B(L^2(G))}$, $||f||_* = \sup\{ \|\tilde{\pi}(f)\|_{\pi}, \ \pi \in \hat{G} \}$.

•
$$(L^{1}(G), \| \|_{1}), C^{*}(G) = \overline{L^{1}(G)}^{\| \|_{*}}, C_{r}^{*}(G) = \overline{L^{1}(G)}^{\| \|_{\lambda}}.$$

 \to A is called an operator algebra if $A\subseteq B(H)$ is an algebra, closed under the norm topology, for some Hilbert space H.

For a locally compact group G, a unitary representation π on some Hilbert space H is continuous homomorphism into the unitary group $\mathcal U$ of B(H).

 $\lambda: G \longrightarrow B(L^2(G)), \ \ (\lambda(t)(f))(h) = f(h^{-1}t)$ is called left regular representation.

$$\tilde{\pi}: L^1(G) \longrightarrow B(H) \ \tilde{\pi}(f) = \int_G f(t)\pi(t)d\mu(t) \ f \in L^1(G).$$

On $L^1(G)$, consider $||f||_1 = \int_G |f(t)| d\mu(t)$, $||f||_{\lambda} = ||\lambda(f)||_{B(L^2(G))}$, $||f||_* = \sup\{ ||\tilde{\pi}(f)||_{\pi}, \ \pi \in \hat{G} \}$.

$$\bullet \ (L^1(G), \| \ \|_1), \ C^*(G) = \overline{L^1(G)}^{\| \ \|_*}, \ C^*_r(G) = \overline{L^1(G)}^{\| \ \|_\lambda}.$$

 \rightarrow A is called an operator algebra if $A\subseteq B(H)$ is an algebra, closed under the norm topology, for some Hilbert space H.

For a locally compact group G, a unitary representation π on some Hilbert space H is continuous homomorphism into the unitary group $\mathcal U$ of B(H).

 $\lambda: G \longrightarrow B(L^2(G)), \ (\lambda(t)(f))(h) = f(h^{-1}t)$ is called left regular representation.

$$\tilde{\pi}: L^1(G) \longrightarrow B(H) \ \tilde{\pi}(f) = \int_G f(t)\pi(t)d\mu(t) \ f \in L^1(G).$$

On
$$L^1(G)$$
, consider $||f||_1 = \int_G |f(t)| d\mu(t)$, $||f||_{\lambda} = ||\lambda(f)||_{B(L^2(G))}$, $||f||_* = \sup\{ \|\tilde{\pi}(f)\|_{\pi}, \ \pi \in \hat{G} \}$.

$$\bullet \ (L^1(G), \|\ \|_1), \ C^*(G) = \overline{L^1(G)}^{\|\ \|_*}, \ C^*_r(G) = \overline{L^1(G)}^{\|\ \|_\lambda}.$$

 \rightarrow A is called an operator algebra if $A\subseteq B(H)$ is an algebra, closed under the norm topology, for some Hilbert space H.

For a locally compact group G, a unitary representation π on some Hilbert space H is continuous homomorphism into the unitary group $\mathcal U$ of B(H).

 $\lambda: G \longrightarrow B(L^2(G)), \ (\lambda(t)(f))(h) = f(h^{-1}t)$ is called left regular representation.

$$\tilde{\pi}: L^1(G) \longrightarrow B(H) \ \ \tilde{\pi}(f) = \int_G f(t) \pi(t) d\mu(t) \ \ f \in L^1(G).$$

On
$$L^1(G)$$
, consider $||f||_1 = \int_G |f(t)| d\mu(t)$, $||f||_{\lambda} = ||\lambda(f)||_{B(L^2(G))}$, $||f||_* = \sup\{ \|\tilde{\pi}(f)\|_{\pi}, \ \pi \in \hat{G} \}$.

$$\bullet \ (L^1(G), \| \ \|_1), \ C^*(G) = \overline{L^1(G)}^{\| \ \|_*}, \ C^*_r(G) = \overline{L^1(G)}^{\| \ \|_{\lambda}}.$$

 \bullet $C_b(G)$, Big algebra Big(G), Group von Neumann algebra VN(G), Measure algebra M(G), The Fourier-Steiljes algebra

$$B(G) = \{ u \in C_b(G) : u = <\pi(.)\xi, \eta > \text{ for some } \pi \in \hat{G}, \ \xi, \ \eta \in H_\pi \}.$$

$$A(G) = \overline{\{u = < \lambda(.)\xi, \eta >, \lambda \text{ left regular representation, } \xi, \eta \in L^2(G)\}^{\|\cdot\|_{B(G)}}}.$$
$$\|u\|_{A(G)} := \|u\|_{B(G)} = \inf\{\|\xi\|_2 \|\eta\|_2 : \xi, \ \eta \in L^2(G)\}.$$

•
$$L^1(G)^* = L^{\infty}(G), \ C^*(G)^* = B(G), \ A(G)^* = vN(G), \ M(G) = C_0(G)^*.$$

• $C_b(G)$, Big algebra Big(G), Group von Neumann algebra VN(G), Measure algebra M(G), The Fourier-Steiljes algebra

$$B(G) = \{u \in C_b(G) : u = \langle \pi(.)\xi, \eta \rangle \text{ for some } \pi \in \hat{G}, \ \xi, \ \eta \in H_\pi\}.$$

$$A(G) = \overline{\{u = < \lambda(.)\xi, \eta >, \lambda \text{ left regular representation, } \xi, \eta \in L^2(G)\}^{\|\cdot\|_{B(G)}}}.$$
$$\|u\|_{A(G)} := \|u\|_{B(G)} = \inf\{\|\xi\|_2 \|\eta\|_2 : \xi, \ \eta \in L^2(G)\}.$$

•
$$L^1(G)^* = L^{\infty}(G), \ C^*(G)^* = B(G), \ A(G)^* = vN(G), \ M(G) = C_0(G)^*.$$

• $C_b(G)$, Big algebra Big(G), Group von Neumann algebra VN(G), Measure algebra M(G), The Fourier-Steiljes algebra

$$B(G) = \{u \in C_b(G) : u = \langle \pi(.)\xi, \eta \rangle \text{ for some } \pi \in \hat{G}, \ \xi, \ \eta \in H_\pi\}.$$

$$A(G) = \{ u = <\lambda(.)\xi, \eta >, \ \lambda \ left \ regular \ representation, \ \xi, \eta \in L^2(G) \}^{\| \ \|_{B(G)}}.$$
$$\|u\|_{A(G)} := \|u\|_{B(G)} = \inf\{ \|\xi\|_2 \|\eta\|_2 : \xi, \ \eta \in L^2(G) \}.$$

•
$$L^1(G)^* = L^{\infty}(G), \ C^*(G)^* = B(G), \ A(G)^* = \nu N(G),$$

 $M(G) = C_0(G)^*.$

• $C_b(G)$, Big algebra Big(G), Group von Neumann algebra VN(G), Measure algebra M(G), The Fourier-Steiljes algebra

$$B(G) = \{u \in C_b(G) : u = \langle \pi(.)\xi, \eta \rangle \text{ for some } \pi \in \hat{G}, \ \xi, \ \eta \in H_\pi\}.$$

$$A(G) = \overline{\{u = < \lambda(.)\xi, \eta >, \lambda \text{ left regular representation, } \xi, \eta \in L^2(G)\}^{\|\cdot\|_{B(G)}}}.$$
$$\|u\|_{A(G)} := \|u\|_{B(G)} = \inf\{\|\xi\|_2 \|\eta\|_2 : \xi, \ \eta \in L^2(G)\}.$$

•
$$L^1(G)^* = L^{\infty}(G), \ C^*(G)^* = B(G), \ A(G)^* = vN(G),$$

 $M(G) = C_0(G)^*.$

• $C_b(G)$, Big algebra Big(G), Group von Neumann algebra VN(G), Measure algebra M(G), The Fourier-Steilies algebra

$$B(G) = \{ u \in C_b(G) : u = <\pi(.)\xi, \eta > \text{ for some } \pi \in \hat{G}, \ \xi, \ \eta \in H_{\pi} \}.$$

$$A(G) = \overline{\{u = < \lambda(.)\xi, \eta >, \lambda \text{ left regular representation, } \xi, \eta \in L^2(G)\}^{\| \|_{B(G)}}}.$$
$$\|u\|_{A(G)} := \|u\|_{B(G)} = \inf\{\|\xi\|_2 \|\eta\|_2 : \xi, \ \eta \in L^2(G)\}.$$

•
$$L^1(G)^* = L^{\infty}(G), \ C^*(G)^* = B(G), \ A(G)^* = vN(G),$$

 $M(G) = C_0(G)^*.$

• $C_b(G)$, Big algebra Big(G), Group von Neumann algebra VN(G), Measure algebra M(G), The Fourier-Steiljes algebra

$$B(G) = \{u \in C_b(G) : u = \langle \pi(.)\xi, \eta \rangle \text{ for some } \pi \in \hat{G}, \xi, \eta \in H_{\pi}\}.$$

$$A(G) = \overline{\{u = <\lambda(.)\xi, \eta>, \lambda \text{ left regular representation, } \xi, \eta \in L^2(G)\}^{\|\cdot\|_{B(G)}}}.$$
$$\|u\|_{A(G)} := \|u\|_{B(G)} = \inf\{\|\xi\|_2 \|\eta\|_2 : \xi, \ \eta \in L^2(G)\}.$$

•
$$L^1(G)^* = L^{\infty}(G), \ C^*(G)^* = B(G), \ A(G)^* = vN(G),$$

 $M(G) = C_0(G)^*.$

ullet $C_b(G)$, Big algebra Big(G), Group von Neumann algebra VN(G), Measure algebra M(G), The Fourier-Steiljes algebra

$$B(G) = \{ u \in C_b(G) : u = <\pi(.)\xi, \eta > \text{ for some } \pi \in \hat{G}, \xi, \eta \in H_{\pi} \}.$$

$$A(G) = \overline{\{u = < \lambda(.)\xi, \eta >, \lambda \text{ left regular representation, } \xi, \eta \in L^2(G)\}^{\| \|_{B(G)}}}.$$
$$\|u\|_{A(G)} := \|u\|_{B(G)} = \inf\{\|\xi\|_2 \|\eta\|_2 : \xi, \ \eta \in L^2(G)\}.$$

•
$$L^1(G)^* = L^{\infty}(G)$$
, $C^*(G)^* = B(G)$, $A(G)^* = \nu N(G)$, $M(G) = C_0(G)^*$.

ullet $C_b(G)$, Big algebra Big(G), Group von Neumann algebra VN(G), Measure algebra M(G), The Fourier-Steiljes algebra

$$B(G) = \{ u \in C_b(G) : u = <\pi(.)\xi, \eta > \text{ for some } \pi \in \hat{G}, \xi, \eta \in H_{\pi} \}.$$

$$A(G) = \overline{\{u = <\lambda(.)\xi, \eta>, \ \lambda \ left \ regular \ representation, \ \xi, \eta \in L^2(G)\}^{\|\ \|_{B(G)}}}.$$

$$\|u\|_{A(G)} := \|u\|_{B(G)} = \inf\{\|\xi\|_2 \|\eta\|_2 : \xi, \ \eta \in L^2(G)\}.$$

•
$$L^1(G)^* = L^{\infty}(G)$$
, $C^*(G)^* = B(G)$, $A(G)^* = \nu N(G)$, $M(G) = C_0(G)^*$.

• $C_b(G)$, Big algebra Big(G), Group von Neumann algebra VN(G), Measure algebra M(G), The Fourier-Steiljes algebra

$$B(G) = \{ u \in C_b(G) : u = <\pi(.)\xi, \eta > \text{ for some } \pi \in \hat{G}, \xi, \eta \in H_{\pi} \}.$$

• The Fourier algebra

$$A(G) = \overline{\{u = <\lambda(.)\xi, \eta>, \lambda \text{ left regular representation, } \xi, \eta \in L^2(G)\}^{\|\cdot\|_{B(G)}}}.$$
$$\|u\|_{A(G)} := \|u\|_{B(G)} = \inf\{\|\xi\|_2 \|\eta\|_2 : \xi, \ \eta \in L^2(G)\}.$$

• $L^1(G)^* = L^{\infty}(G), \ C^*(G)^* = B(G), \ A(G)^* = \nu N(G),$ $M(G) = C_0(G)^*.$

Definition

Let A be a (Banach) complex algebra. A is called contractible if for any bimodule X on A, every derivation $D:A\to X$ is inner.

Theorem

A is contratible iff A is semisimple finite dimensional algebra.

Definition

Let A be a Banach complex algebra. A is called **syper amenable** if for any Banach bimodule X on A, every bounded derivation $D: A \to X$ is inner.

Theorem A. Ya. Helemskii

Definition

Let A be a (Banach) complex algebra. A is called contractible if for any bimodule X on A, every derivation $D:A\to X$ is inner.

Theorem

A is contratible iff A is semisimple finite dimensional algebra.

Definition

Let A be a Banach complex algebra. A is called **syper amenable** if for any Banach bimodule X on A, every bounded derivation $D: A \to X$ is inner.

Theorem A. Ya. Helemskii

Definition

Let A be a (Banach) complex algebra. A is called contractible if for any bimodule X on A, every derivation $D:A\to X$ is inner.

Theorem

A is contratible iff A is semisimple finite dimensional algebra.

Definition

Let A be a Banach complex algebra. A is called **syper amenable** if for any Banach bimodule X on A, every bounded derivation $D:A\to X$ is inner.

Theorem A. Ya. Helemskii

Definition

Let A be a (Banach) complex algebra. A is called contractible if for any bimodule X on A, every derivation $D:A\to X$ is inner.

Theorem

A is contratible iff A is semisimple finite dimensional algebra.

Definition

Let A be a Banach complex algebra. A is called **syper amenable** if for any Banach bimodule X on A, every bounded derivation $D:A\to X$ is inner.

Theorem A. Ya. Helemskii

- No infinte dimesional exemple until yet.
- Helemskii 's Conjecture : Syper amenable Banach algebra is finte dimensional.

Theorem El Harti IJMMS 2004

Let *A* be an syper amenable Banach algebra such that each left maximal ideal is complemented, then *A* is semisimple finite dimensional algebra.

- 1. A syper amenable C*-algebra is finite dimensional algebra.
- 2. A syper amenable reduced involutive Banach algebra is finite dimensional algebra.
- 3. A syper amenable Hermitian involutive Banach algebra is finite dimensional algebra.

Definition

Let A be a Banach complex algebra. A is called **amenable** if for any bimodule X on A, every derivation $D:A\to X^*$ into the dual of X is inner

- No infinte dimesional exemple until yet.
- Helemskii 's Conjecture : Syper amenable Banach algebra is finte dimensional.

Theorem El Harti IJMMS 2004

Let A be an syper amenable Banach algebra such that each left maximal ideal is complemented, then A is semisimple finite dimensional algebra.

- 1. A syper amenable C*-algebra is finite dimensional algebra.
- 2. A syper amenable reduced involutive Banach algebra is finite dimensional algebra.
- 3. A syper amenable Hermitian involutive Banach algebra is finite dimensional algebra.

Definition

Let A be a Banach complex algebra. A is called **amenable** if for any bimodule X on A, every derivation $D:A\to X^*$ into the dual of X is inner

- No infinte dimesional exemple until yet.
- Helemskii 's Conjecture : Syper amenable Banach algebra is finte dimensional.

Theorem El Harti IJMMS 2004

Let A be an syper amenable Banach algebra such that each left maximal ideal is complemented, then A is semisimple finite dimensional algebra.

- 1. A syper amenable C*-algebra is finite dimensional algebra.
- 2. A syper amenable reduced involutive Banach algebra is finite dimensional algebra.
- A syper amenable Hermitian involutive Banach algebra is finite dimensional algebra.

Definition

Let A be a Banach complex algebra. A is called **amenable** if for any bimodule X on A, every derivation $D:A\to X^*$ into the dual of X is inner.

- No infinte dimesional exemple until yet.
- Helemskii 's Conjecture : Syper amenable Banach algebra is finte dimensional.

Theorem El Harti IJMMS 2004

Let A be an syper amenable Banach algebra such that each left maximal ideal is complemented, then A is semisimple finite dimensional algebra.

- 1. A syper amenable C*-algebra is finite dimensional algebra.
- 2. A syper amenable reduced involutive Banach algebra is finite dimensional algebra.
- A syper amenable Hermitian involutive Banach algebra is finite dimensional algebra.

Definition

Let A be a Banach complex algebra. A is called **amenable** if for any bimodule X on A, every derivation $D:A\to X^*$ into the dual of X is inner

- No infinte dimesional exemple until yet.
- Helemskii 's Conjecture : Syper amenable Banach algebra is finte dimensional.

Theorem El Harti IJMMS 2004

Let A be an syper amenable Banach algebra such that each left maximal ideal is complemented, then A is semisimple finite dimensional algebra.

- 1. A syper amenable C*-algebra is finite dimensional algebra.
- 2. A syper amenable reduced involutive Banach algebra is finite dimensional algebra.
- 3. A syper amenable Hermitian involutive Banach algebra is finite dimensional algebra.

Definition

Let A be a Banach complex algebra. A is called **amenable** if for any bimodule X on A, every derivation $D:A\to X^*$ into the dual of X is inner

- No infinte dimesional exemple until yet.
- Helemskii 's Conjecture : Syper amenable Banach algebra is finte dimensional.

Theorem El Harti IJMMS 2004

Let A be an syper amenable Banach algebra such that each left maximal ideal is complemented, then A is semisimple finite dimensional algebra.

- 1. A syper amenable C*-algebra is finite dimensional algebra.
- 2. A syper amenable reduced involutive Banach algebra is finite dimensional algebra.
- 3. A syper amenable Hermitian involutive Banach algebra is finite dimensional algebra.

Definition

Let A be a Banach complex algebra. A is called **amenable** if for any bimodule X on A, every derivation $D:A\to X^*$ into the dual of X is inner.

Amenable groups

By John von Neumann in 1929

Definition

An amenable group G is a topological group with a lefy invariant mean on the algebra $C_{ru}(G)$ of the right uniformly continous functions on G.

Examples: Compact groups, Abelien groups

The Heisenberg group
$$\left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, a,b,c \in \right\}$$

- $\bullet 0 \longrightarrow N \longrightarrow G \longrightarrow G/N \longrightarrow 0.$
- Counterexamples : $Sl(2,\mathbb{R})$, Free group F_2 .

Any discrete group contains free group as a copy

Amenable groups

By John von Neumann in 1929

Definition

An amenable group G is a topological group with a lefy invariant mean on the algebra $C_{ru}(G)$ of the right uniformly continous functions on G.

• Examples : Compact groups, Abelien groups

The Heisenberg group
$$\left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, a,b,c \in \right\}$$

- ullet 0 \longrightarrow $N \longrightarrow G \longrightarrow G/N \longrightarrow 0$.
- Counterexamples : $Sl(2,\mathbb{R})$, Free group F_2 .

Any discrete group contains free group as a copy

By John von Neumann in 1929

Definition

An amenable group G is a topological group with a lefy invariant mean on the algebra $C_{ru}(G)$ of the right uniformly continous functions on G.

• Examples : Compact groups, Abelien groups

The Heisenberg group
$$\left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, a,b,c \in \right\}$$

- $\bullet 0 \longrightarrow N \longrightarrow G \longrightarrow G/N \longrightarrow 0.$
- Counterexamples : $Sl(2,\mathbb{R})$, Free group F_2 .

Any discrete group contains free group as a copy

By John von Neumann in 1929

Definition

An amenable group G is a topological group with a lefy invariant mean on the algebra $C_{ru}(G)$ of the right uniformly continous functions on G.

• Examples : Compact groups, Abelien groups

The Heisenberg group
$$\left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, a,b,c \in \right\}$$

- $\bullet 0 \longrightarrow N \longrightarrow G \longrightarrow G/N \longrightarrow 0.$
- Counterexamples : $Sl(2,\mathbb{R})$, Free group F_2 .

Any discrete group contains free group as a copy

By John von Neumann in 1929

Definition

An amenable group G is a topological group with a lefy invariant mean on the algebra $C_{ru}(G)$ of the right uniformly continous functions on G.

• Examples : Compact groups, Abelien groups

The Heisenberg group
$$\left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, a,b,c \in \right\}$$

- $\bullet 0 \longrightarrow N \longrightarrow G \longrightarrow G/N \longrightarrow 0.$
- Counterexamples : $Sl(2,\mathbb{R})$, Free group F_2 .

Any discrete group contains free group as a copy

By John von Neumann in 1929

Definition

An amenable group G is a topological group with a lefy invariant mean on the algebra $C_{ru}(G)$ of the right uniformly continous functions on G.

• Examples : Compact groups, Abelien groups

The Heisenberg group $\left\{ \begin{pmatrix} 1 & a & c \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}, a,b,c \in \right\}$

- ullet 0 \longrightarrow $N \longrightarrow G \longrightarrow G/N \longrightarrow 0$.
- Counterexamples : $Sl(2,\mathbb{R})$, Free group F_2 .

Any discrete group contains free group as a copy.

Theorem B.E. Johnson 1971

A locally compact group G is amenable if and only if for any bimodule X on $L^1(G)$, every derivation $D:L^1(G)\longrightarrow X^*$ is inner where X^* is the dual of X

Johnson in 1972

Definition

A Banach algebra is amenable if for any bimodule X on A, every derivation $D:A\longrightarrow X^*$ is inner.

• \forall Banach bimodule $X, H^1(A, X^*) = \{0\}.$

Examples: K(H), C(X), Cuntz algebras O_n , $L^1(G)$. $C^*(G)$ if G amenable, $C^*(Sl_2(R))$.

Counterexamples; B(H) with $dim(H) = \infty$, A(G) even if G is amenable. the Disc Algebra A(D).

Theorem B.E. Johnson 1971

A locally compact group G is amenable if and only if for any bimodule X on $L^1(G)$, every derivation $D:L^1(G)\longrightarrow X^*$ is inner where X^* is the dual of X

Johnson in 1972

Definition

A Banach algebra is amenable if for any bimodule X on A, every derivation $D:A\longrightarrow X^*$ is inner.

• \forall Banach bimodule $X, H^1(A, X^*) = \{0\}.$

Examples: K(H), C(X), Cuntz algebras O_n , $L^1(G)$. $C^*(G)$ if G amenable, $C^*(Sl_2(R))$.

Counterexamples; B(H) with $dim(H) = \infty$, A(G) even if G is amenable. the Disc Algebra A(D).

Theorem B.E. Johnson 1971

A locally compact group G is amenable if and only if for any bimodule X on $L^1(G)$, every derivation $D:L^1(G)\longrightarrow X^*$ is inner where X^* is the dual of X

Johnson in 1972

Definition

A Banach algebra is amenable if for any bimodule X on A, every derivation $D:A\longrightarrow X^*$ is inner.

• \forall Banach bimodule X, $H^1(A, X^*) = \{0\}$.

Examples: K(H), C(X), Cuntz algebras O_n , $L^1(G)$. $C^*(G)$ if G amenable, $C^*(Sl_2(R))$.

Counterexamples; B(H) with $dim(H) = \infty$, A(G) even if G is amenable. the Disc Algebra $\mathbb{A}(D)$.

Theorem B.E. Johnson 1971

A locally compact group G is amenable if and only if for any bimodule X on $L^1(G)$, every derivation $D:L^1(G)\longrightarrow X^*$ is inner where X^* is the dual of X

Johnson in 1972

Definition

A Banach algebra is amenable if for any bimodule X on A, every derivation $D:A\longrightarrow X^*$ is inner.

• \forall Banach bimodule $X, H^1(A, X^*) = \{0\}.$

Examples: K(H), C(X), Cuntz algebras O_n , $L^1(G)$. $C^*(G)$ if G amenable, $C^*(Sl_2(R))$.

Counterexamples; B(H) with $dim(H) = \infty$, A(G) even if G is amenable. the Disc Algebra A(D).

Theorem B.E. Johnson 1971

A locally compact group G is amenable if and only if for any bimodule X on $L^1(G)$, every derivation $D:L^1(G)\longrightarrow X^*$ is inner where X^* is the dual of X

Johnson in 1972

Definition

A Banach algebra is amenable if for any bimodule X on A, every derivation $D:A\longrightarrow X^*$ is inner.

• \forall Banach bimodule $X, H^1(A, X^*) = \{0\}.$

Examples: K(H), C(X), Cuntz algebras O_n , $L^1(G)$. $C^*(G)$ if G amenable, $C^*(Sl_2(R))$.

Counterexamples; B(H) with $dim(H) = \infty$, A(G) even if G is amenable. the Disc Algebra A(D).

Theorem B.E. Johnson 1971

A locally compact group G is amenable if and only if for any bimodule X on $L^1(G)$, every derivation $D:L^1(G)\longrightarrow X^*$ is inner where X^* is the dual of X

Johnson in 1972

Definition

A Banach algebra is amenable if for any bimodule X on A, every derivation $D:A\longrightarrow X^*$ is inner.

• \forall Banach bimodule $X, H^1(A, X^*) = \{0\}.$

Examples: K(H), C(X), Cuntz algebras O_n , $L^1(G)$. $C^*(G)$ if G amenable, $C^*(Sl_2(R))$.

Counterexamples ; B(H) with $\dim(H)=\infty, A(G)$ even if G is amenable. the Disc Algebra $\mathbb{A}(D)$.

Theorem

Let G be a loccaly compact group. Then the following are equivalent:

- 1. G is amenable.
- 2. $L^1(G)$ is amenable
- 3. A(G) has a bounded approximate identity
- 4. B(G) has an identity.
- 5. $C^*(G) = C^*(G)$ and amenable.

$$\lim_{\alpha} e_{\alpha} a = \lim_{\alpha} a e_{\alpha} = a, \quad a \in A.$$

Theorem

Let G be a loccaly compact group. Then the following are equivalent:

- 1. G is amenable.
- 2. $L^1(G)$ is amenable
- 3. A(G) has a bounded approximate identity
- 4. B(G) has an identity.
- 5. $C^*(G) = C^*(G)$ and amenable.

$$\lim_{\alpha} e_{\alpha} a = \lim_{\alpha} a e_{\alpha} = a, \quad a \in A.$$

Theorem

Let G be a loccaly compact group. Then the following are equivalent :

- 1. G is amenable.
- 2. $L^1(G)$ is amenable.
- 3. A(G) has a bounded approximate identity
- 4. B(G) has an identity.
- 5. $C^*(G) = C_r^*(G)$ and amenable.

$$\lim_{\alpha} e_{\alpha} a = \lim_{\alpha} a e_{\alpha} = a, \quad a \in A.$$

Theorem

Let G be a loccaly compact group. Then the following are equivalent : 1. G is amenable.

- 2. $L^1(G)$ is amenable
- 3. A(G) has a bounded approximate identity
- 4. B(G) has an identity.
- 5. $C^*(G) = C_r^*(G)$ and amenable.

$$\lim_{\alpha} e_{\alpha} a = \lim_{\alpha} a e_{\alpha} = a, \quad a \in A.$$

Theorem

Let G be a loccaly compact group. Then the following are equivalent :

- 1. G is amenable.
- 2. $L^1(G)$ is amenable.
- 3. A(G) has a bounded approximate identity
- 4. B(G) has an identity.
- 5. $C^*(G) = C^*(G)$ and amenable.

$$\lim_{\alpha} e_{\alpha} a = \lim_{\alpha} a e_{\alpha} = a, \quad a \in A.$$

Theorem

Let G be a loccaly compact group. Then the following are equivalent :

- 1. G is amenable.
- 2. $L^1(G)$ is amenable.
- 3. A(G) has a bounded approximate identity
- 4. B(G) has an identity.
- 5. $C^*(G) = C^*(G)$ and amenable.

$$\lim_{\alpha} e_{\alpha} a = \lim_{\alpha} a e_{\alpha} = a, \quad a \in A.$$

Theorem

Let G be a loccaly compact group. Then the following are equivalent :

- 1. G is amenable.
- 2. $L^1(G)$ is amenable.
- 3. A(G) has a bounded approximate identity
- 4. B(G) has an identity.
- 5. $C^*(G) = C_r^*(G)$ and amenable.

$$\lim_{\alpha} e_{\alpha} a = \lim_{\alpha} a e_{\alpha} = a, \quad a \in A.$$

Theorem

Let G be a loccaly compact group. Then the following are equivalent :

- 1. *G* is amenable.
- 2. $L^1(G)$ is amenable.
- 3. A(G) has a bounded approximate identity
- 4. B(G) has an identity.
- 5. $C^*(G) = C_r^*(G)$ and amenable.

$$\lim_{\alpha} e_{\alpha} a = \lim_{\alpha} a e_{\alpha} = a, \quad a \in A.$$

Note : Every closed tow-sided ideal J with a bounded approximate identity in an amenable Banach algebra A is amenable.

Theorem R. El Harti 2010, J.O.M

- ullet So, Every closed tow-sided ideal J of an amenable operator algebra A is amenable.
- The amenability passes to quotient A/J.

$$ullet$$
 0 \longrightarrow J \longrightarrow A \longrightarrow A/J \longrightarrow 0.

Note: Every closed tow-sided ideal J with a bounded approximate identity in an amenable Banach algebra A is amenable.

Theorem R. El Harti 2010, J.O.M

- ullet So, Every closed tow-sided ideal J of an amenable operator algebra A is amenable.
- The amenability passes to quotient A/J.

$$ullet$$
 0 \longrightarrow J \longrightarrow A \longrightarrow A/J \longrightarrow 0.

Note: Every closed tow-sided ideal J with a bounded approximate identity in an amenable Banach algebra A is amenable.

Theorem R. El Harti 2010. J.O.M

- ullet So, Every closed tow-sided ideal J of an amenable operator algebra A is amenable.
- The amenability passes to quotient A/J.
- $\bullet \ 0 \longrightarrow J \longrightarrow A \longrightarrow A/J \longrightarrow 0.$

Note: Every closed tow-sided ideal J with a bounded approximate identity in an amenable Banach algebra A is amenable.

Theorem R. El Harti 2010, J.O.M.

- ullet So, Every closed tow-sided ideal J of an amenable operator algebra A is amenable.
- The amenability passes to quotient A/J.

$$ullet$$
 0 \longrightarrow $J \longrightarrow $A \longrightarrow A/J \longrightarrow$ 0.$

Note: Every closed tow-sided ideal J with a bounded approximate identity in an amenable Banach algebra A is amenable.

Theorem R. El Harti 2010, J.O.M.

- ullet So, Every closed tow-sided ideal J of an amenable operator algebra A is amenable.
- ullet The amenability passes to quotient A/J.
- $\bullet \ 0 \longrightarrow J \longrightarrow A \longrightarrow A/J \longrightarrow 0.$

Theorem

Let A be a finite dimensional algebra, Then the following are equivalent:

- 1. A is amenable.
- 2. A is semisimple.
- 3. A has a diagonal. $\ni d \in A \otimes A$ such that ad = da for each $a \in A$ and $\pi(d) = 1$ where $\pi; A \otimes A \to A$.

4.

$$A \equiv \mathbb{M}_{n_1}(\mathbb{C}) \oplus \mathbb{M}_{n_1}(\mathbb{C} \oplus \ldots \oplus \mathbb{M}_{n_k}(\mathbb{C})$$

$$Rad(A) = \{0\}.$$

Theorem

Let A be a finite dimensional algebra, Then the following are equivalent :

- 1. A is amenable
- 2. A is semisimple.
- 3. A has a diagonal. $\ni d \in A \otimes A$ such that ad = da for each $a \in A$ and $\pi(d) = 1$ where $\pi; A \otimes A \to A$.

4

$$A \equiv \mathbb{M}_{n_1}(\mathbb{C}) \oplus \mathbb{M}_{n_1}(\mathbb{C} \oplus \ldots \oplus \mathbb{M}_{n_k}(\mathbb{C})$$

The semisimplicitty $Rad(A) = \{0\}.$

Theorem

Let ${\cal A}$ be a finite dimensional algebra, Then the following are equivalent :

1. A is amenable.

- 2. A is semisimple.
- 3. A has a diagonal. $\ni d \in A \otimes A$ such that ad = da for each $a \in A$ and $\pi(d) = 1$ where $\pi; A \otimes A \to A$.

4.

$$A \equiv \mathbb{M}_{n_1}(\mathbb{C}) \oplus \mathbb{M}_{n_1}(\mathbb{C} \oplus \ldots \oplus \mathbb{M}_{n_k}(\mathbb{C})$$

The semisimplicitty $Rad(A) = \{0\}.$

Theorem

Let A be a finite dimensional algebra, Then the following are equivalent :

- 1. A is amenable.
- 2. A is semisimple.
- 3. A has a diagonal. $\ni d \in A \otimes A$ such that ad = da for each $a \in A$ and $\pi(d) = 1$ where $\pi; A \otimes A \to A$.

4.

$$A \equiv \mathbb{M}_{n_1}(\mathbb{C}) \oplus \mathbb{M}_{n_1}(\mathbb{C} \oplus \dots \oplus \mathbb{M}_{n_k}(\mathbb{C})$$

The semisimplicitty $Rad(A) = \{0\}.$

Theorem

Let ${\it A}$ be a finite dimensional algebra, Then the following are equivalent :

- 1. A is amenable.
- 2. A is semisimple.
- 3. A has a diagonal. $\ni d \in A \otimes A$ such that ad = da for each $a \in A$ and $\pi(d) = 1$ where $\pi; A \otimes A \to A$.

4.

$$A \equiv \mathbb{M}_{n_1}(\mathbb{C}) \oplus \mathbb{M}_{n_1}(\mathbb{C} \oplus \ldots \ldots \oplus \mathbb{M}_{n_k}(\mathbb{C})$$

The semisimplicitty $Rad(A) = \{0\}.$

Theorem

Let ${\it A}$ be a finite dimensional algebra, Then the following are equivalent :

- 1. A is amenable.
- 2. A is semisimple.
- 3. A has a diagonal. $\ni d \in A \otimes A$ such that ad = da for each $a \in A$ and $\pi(d) = 1$ where $\pi; A \otimes A \to A$.

4.

$$A \equiv \mathbb{M}_{n_1}(\mathbb{C}) \oplus \mathbb{M}_{n_1}(\mathbb{C} \oplus \oplus \mathbb{M}_{n_k}(\mathbb{C}$$

The semisimplicitty $Rad(A) = \{0\}.$

Theorem

Let ${\it A}$ be a finite dimensional algebra, Then the following are equivalent :

- 1. A is amenable.
- 2. A is semisimple.
- 3. A has a diagonal. \ni $d \in A \otimes A$ such that ad = da for each $a \in A$ and $\pi(d) = 1$ where $\pi; A \otimes A \to A$.

4.

$$A \equiv \mathbb{M}_{n_1}(\mathbb{C}) \oplus \mathbb{M}_{n_1}(\mathbb{C} \oplus \oplus \mathbb{M}_{n_k}(\mathbb{C}$$

.

The semisimplicitty $Rad(A) = \{0\}.$

Theorem

Let ${\it A}$ be a finite dimensional algebra, Then the following are equivalent :

- 1. A is amenable.
- 2. A is semisimple.
- 3. A has a diagonal. $\ni d \in A \otimes A$ such that ad = da for each $a \in A$ and $\pi(d) = 1$ where $\pi; A \otimes A \to A$.

4.

$$A \equiv \mathbb{M}_{n_1}(\mathbb{C}) \oplus \mathbb{M}_{n_1}(\mathbb{C} \oplus \oplus \mathbb{M}_{n_k}(\mathbb{C}$$

The semisimplicitty $Rad(A) = \{0\}.$

Natural Question : If $dim(A) = +\infty$

 $Amenability \subseteq Smisimplicity$

Answer: No

- $\leftarrow B(H)$ with $dim(H) = +\infty$ semisimple but not amenable.
- ightarrow By Read \exists a radical amenable Banach algebra wich is not an operator algebra.
- Is an amenable operator algebra semisimple?

Definition

Natural Question : If $dim(A) = +\infty$

 $Amenability \subseteq Smisimplicity$

Answer: No

- $\leftarrow B(H)$ with $dim(H) = +\infty$ semisimple but not amenable.
- ightarrow By Read \exists a radical amenable Banach algebra wich is not an operator algebra.
- Is an amenable operator algebra semisimple?

Definition

Natural Question : If $dim(A) = +\infty$

 $Amenability \subseteq Smisimplicity$

Answer: No

 \leftarrow B(H) with $dim(H) = +\infty$ semisimple but not amenable.

- \rightarrow By Read \exists a radical amenable Banach algebra wich is not an operator algebra.
- Is an amenable operator algebra semisimple?

Definition

Natural Question : If $dim(A) = +\infty$

 $Amenability \subseteq Smisimplicity$

Answer: No

- $\leftarrow B(H)$ with $dim(H) = +\infty$ semisimple but not amenable.
- ightarrow By Read \exists a radical amenable Banach algebra wich is not an operator algebra.
- Is an amenable operator algebra semisimple?

Definition

Natural Question : If $dim(A) = +\infty$

 $Amenability \subseteq Smisimplicity$

Answer: No

- $\leftarrow B(H)$ with $dim(H) = +\infty$ semisimple but not amenable.
- ightarrow By Read \exists a radical amenable Banach algebra wich is not an operator algebra.
- Is an amenable operator algebra semisimple?

Definition

Problems

Natural Question : If $dim(A) = +\infty$

 $Amenability \subseteq Smisimplicity$

Answer: No

- $\leftarrow B(H)$ with $dim(H) = +\infty$ semisimple but not amenable.
- ightarrow By Read \exists a radical amenable Banach algebra wich is not an operator algebra.
- Is an amenable operator algebra semisimple?

Definition

A Banach algebra A satisfies to Wedderburn property (W) if for each a closed two sided ideal I which is complemented as a Banach space. There is a closed two sided ideal J such that $A = I \oplus J$.

Problems

Natural Question : If $dim(A) = +\infty$

 $Amenability \subseteq Smisimplicity$

Answer: No

- $\leftarrow B(H)$ with $dim(H) = +\infty$ semisimple but not amenable.
- \rightarrow By Read \exists a radical amenable Banach algebra wich is not an operator algebra.
- Is an amenable operator algebra semisimple?

Definition

A Banach algebra A satisfies to Wedderburn property (W) if for each a closed two sided ideal I which is complemented as a Banach space. There is a closed two sided ideal J such that $A = I \oplus J$.

Main theorem

Theorem: R. El Harti and P. Pinto. Arckiv Math. July 2013

Let *A* be a reflexive amenable operator algebra. Then it is semisimple with property (W). In this case, it is a finite direct sum of simple Banach algebras of operators.

Proof : First show that every closed ideal of an operator algebra has b.a.i. Let $\pi:A\to B(H)$ be a bounded representation of A on some Hilbert space H. Let M be a closed invariant subspace of $\pi(A)$ and take the following admissible short sequence

$$0 \longrightarrow M \longrightarrow H \rightarrow H/M \longrightarrow 0.$$

By [Curtis], this sequence splits, therefore A has the total reduction property. It follows from [REIHarti] that every closed two-sided ideal of A has a bounded approximate identity. Therefore the result is now an easy consequence of the following results .

Main theorem

Theorem: R. El Harti and P. Pinto. Arckiv Math. July 2013

Let A be a reflexive amenable operator algebra. Then it is semisimple with property (W). In this case, it is a finite direct sum of simple Banach algebras of operators.

Proof : First show that every closed ideal of an operator algebra has b.a.i. Let $\pi:A\to B(H)$ be a bounded representation of A on some Hilbert space H. Let M be a closed invariant subspace of $\pi(A)$ and take the following admissible short sequence

$$0 \longrightarrow M \longrightarrow H \rightarrow H/M \longrightarrow 0.$$

By [Curtis], this sequence splits, therefore A has the total reduction property. It follows from [REIHarti] that every closed two-sided ideal of A has a bounded approximate identity. Therefore the result is now an easy consequence of the following results .

Main theorem

Theorem: R. El Harti and P. Pinto. Arckiv Math. July 2013

Let *A* be a reflexive amenable operator algebra. Then it is semisimple with property (W). In this case, it is a finite direct sum of simple Banach algebras of operators.

Proof: First show that every closed ideal of an operator algebra has b.a.i.

Let $\pi:A\to B(H)$ be a bounded representation of A on some Hilbert space H. Let M be a closed invariant subspace of $\pi(A)$ and take the following admissible short sequence

$$0 \longrightarrow M \longrightarrow H \rightarrow H/M \longrightarrow 0$$
.

By [Curtis], this sequence splits, therefore A has the total reduction property. It follows from [REIHarti] that every closed two-sided ideal of A has a bounded approximate identity. Therefore the result is now an easy consequence of the following results .

main resultIs

Lemma 1.

Let A be a reflexive operator algebra such that every maximal two sided ideal of A has a bounded approximate identity. Then every primitive ideal of A is maximal.

Proof : Let P be a primitive ideal. Then B := A/P is a primitive operator algebra. Is B is simple ? For a maximal two-sided ideal M_B in B. Then M_B has a bounded approximate identity (since $M_B = (M_A + P)/P$ for some maximal two-sided ideal M_A in A).

Then $M_B^{"}$ is a two-sided ideal in B^{**} and $M_B^{"}=B^{**}p$ with $p\in B^{**}$ some central idempotent [Effros]. Besides this,

$$B^{**} = B^{**}p \oplus B^{**}(1_{B^{**}} - p), \tag{1}$$

Since the reflexivity property passes to quotients we have that B is also reflexive. Thus from (1) we conclude that $B=Bp\oplus B(1-p)$ with Bp and B(1-p) being two-sided ideals in B. However every non-trivial two-sided ideal in the primitive algebra B is essential (an ideal I is said to be essential if $I\cap J$ is non-trivial for all non-trivial ideal J. It follows that $Bp=\{0\}$ or $B(1-p)=\{0\}$. Since $M_B=Bp\neq B$ and $p\neq 1$ we conclude that $Bp=\{0\}$. Hence $M_B=\{0\}$ and so B is simple.

main resultIs

Lemma 1.

Let A be a reflexive operator algebra such that every maximal two sided ideal of A has a bounded approximate identity. Then every primitive ideal of A is maximal.

Proof : Let P be a primitive ideal. Then B:=A/P is a primitive operator algebra. Is B is simple ? For a maximal two-sided ideal M_B in B. Then M_B has a bounded approximate identity (since $M_B=(M_A+P)/P$ for some maximal two-sided ideal M_A in A).

Then $\overline{M_B}^{v^*}$ is a two-sided ideal in B^{**} and $\overline{M_B}^{v^*}=B^{**}p$ with $p\in B^{**}$ some central idempotent [Effros]. Besides this,

$$B^{**} = B^{**}p \oplus B^{**}(1_{B^{**}} - p), \tag{1}$$

Since the reflexivity property passes to quotients we have that B is also reflexive. Thus from (1) we conclude that $B=Bp\oplus B(1-p)$ with Bp and B(1-p) being two-sided ideals in B. However every non-trivial two-sided ideal in the primitive algebra B is essential (an ideal I is said to be essential if $I\cap J$ is non-trivial for all non-trivial ideal J. It follows that $Bp=\{0\}$ or $B(1-p)=\{0\}$. Since $M_B=Bp\neq B$ and $p\neq 1$ we conclude that $Bp=\{0\}$. Hence $M_B=\{0\}$ and so B is simple.

Main results

Lemma 2

Let A be a reflexive operator algebra such that each maximal two sided ideal has a bounded approximate identity. Then A is semisimple. Moreover, A is a finite direct sum of simple operator algebras.

Proof : Let Π_A be the space of all primitive ideals in A equipped with the hull kernel topology. If $P \in \Pi_A$, then P is maximal by Lemma. Therefore P has a bounded approximate identity and $P^{**} = A^{**}p$ for some central idempotent p by [Effros]. Since A is reflexive, P = Ap. Using the same argument in [Galé Ransford, White], we conclude that Π_A is discrete and compact. Hence Π_A is a finite set, say $\Pi_A = \{P_1, \ldots, P_n\}$ with central idempotents p_1, \ldots, p_n , respectively. It is easy to check that

$$A = Ap_1p_2...p_n \oplus \bigoplus_{i=1}^n A(1 - p_i), \quad Rad(A) = Ap_1p_2...p_n = \bigcap_{i=1}^n Ap_i.$$

Therefore $Rad(A) = \{0\}$ and $A(1 - p_i)$ is a minimal two sided ideal (for every i = 1, ..., n). Thus A is semisimple and moreover A is a finite direct sum of simple algebras.

Main results

Lemma 2.

Let A be a reflexive operator algebra such that each maximal two sided ideal has a bounded approximate identity. Then A is semisimple. Moreover, A is a finite direct sum of simple operator algebras.

Proof : Let Π_A be the space of all primitive ideals in A equipped with the hull kernel topology. If $P \in \Pi_A$, then P is maximal by Lemma. Therefore P has a bounded approximate identity and $P^{**} = A^{**}p$ for some central idempotent p by [Effros]. Since A is reflexive, P = Ap. Using the same argument in [Galé Ransford, White], we conclude that Π_A is discrete and compact. Hence Π_A is a finite set, say $\Pi_A = \{P_1, \ldots, P_n\}$ with central idempotents p_1, \ldots, p_n , respectively. It is easy to check that

$$A = Ap_1p_2...p_n \oplus \bigoplus_{i=1}^n A(1-p_i), \quad \text{Rad}(A) = Ap_1p_2...p_n = \bigcap_{i=1}^n Ap_i.$$

Therefore $Rad(A) = \{0\}$ and $A(1 - p_i)$ is a minimal two sided ideal (for every i = 1, ..., n). Thus A is semisimple and moreover A is a finite direct sum of simple algebras.

Main results

Lemma 2.

Let A be a reflexive operator algebra such that each maximal two sided ideal has a bounded approximate identity. Then A is semisimple. Moreover, A is a finite direct sum of simple operator algebras.

Proof : Let Π_A be the space of all primitive ideals in A equipped with the hull kernel topology. If $P \in \Pi_A$, then P is maximal by Lemma. Therefore P has a bounded approximate identity and $P^{**} = A^{**}p$ for some central idempotent p by [Effros]. Since A is reflexive, P = Ap. Using the same argument in [Galé Ransford, White], we conclude that Π_A is discrete and compact. Hence Π_A is a finite set, say $\Pi_A = \{P_1, \ldots, P_n\}$ with central idempotents p_1, \ldots, p_n , respectively. It is easy to check that

$$A = Ap_1p_2...p_n \oplus \bigoplus_{i=1}^n A(1-p_i), \quad Rad(A) = Ap_1p_2...p_n = \bigcap_{i=1}^n Ap_i.$$

Therefore $Rad(A) = \{0\}$ and $A(1 - p_i)$ is a minimal two sided ideal (for every i = 1, ..., n). Thus A is semisimple and moreover A is a finite direct sum of simple algebras.

Main result: Commutative case

Theorem. (Rachid, Pnto)

If A_T^0 amenable and contains a non trivial compact operator K, then T is non quasinilpotent.

- Proof: We show that $TK \neq 0$. Indeed, if that is not the case, then since $K \in A_T^0$, K is a limit of polynomial $P_n(T)$ with $P_n(0) = 0$. So K^2 is the limit of $P_n(T)K$. Note now that $P_n(T)K = 0$ for all n, so $K^2 = 0$ thus K is nilpotent. This implies that A_K^0 is finite dimensional amenable algebra and thus it is semisimple algebra. Therefore K = 0
- So since $TK \neq 0$, there exists a trace-class operator $N \in C(H)$ such that $\operatorname{tr}(TKN) \neq 0$. Let D_N be the derivation from A_T^0 to $(A_{TK}^0)^{\mathsf{T}}$ defined by $D_N(A) := NA AN$ for all $A \in A_T^0 \subseteq B(H) = C(H)^*$, where $(A_{TK}^0)^{\mathsf{T}}$ is the annihilator of A_{TK}^0 taken in C(H) (note that $A_{TK}^0 \subseteq A_T^0$, so
- $D:A_T^0 \to (A_T^0)^{\mathsf{T}} \subseteq (A_{TK}^0)^{\mathsf{T}})$. Besides this, $(A_{TK}^0)^{\mathsf{T}}$ is a Banach A_T^0 -bimodule in C(H). Since A_T^0 is amenable D_N is inner, so there exists an $M \in (A_{TK}^0)^{\mathsf{T}}$ such that $D_N(A) = MA AM$ for all $A \in A_T^0$. This means that KT(N-M) = (N-M)KT and $\mathrm{tr}(KT(N-M)) = \mathrm{tr}((N-M)KT) \neq 0$. Hence $\sigma(KT(N-M)) \neq \{0\}$ where $\sigma(KT(N-M))$ denotes the spectrum of KT(N-M). Since KT and N-M commute we have $\sigma(KT(N-M)) \subseteq \sigma(KT)\sigma(N-M)$ and therefore $\sigma(KT) \neq \{0\}$. Similarly, $\sigma(KT) \subseteq \sigma(K)\sigma(T)$, whence $\sigma(T) \neq \{0\}$. Therefore T is non quasinilpotent.

Main result: Commutative case

Theorem. (Rachid, Pnto)

If A_T^0 amenable and contains a non trivial compact operator K, then T is non quasinilpotent.

Proof: ullet We show that $TK \neq 0$. Indeed, if that is not the case, then since $K \in A_T^0$, K is a limit of polynomial $P_n(T)$ with $P_n(0) = 0$. So K^2 is the limit of $P_n(T)K$. Note now that $P_n(T)K = 0$ for all n, so $K^2 = 0$ thus K is nilpotent. This implies that A_K^0 is finite dimensional amenable algebra and thus it is semisimple algebra. Therefore K = 0

• So since $TK \neq 0$, there exists a trace-class operator $N \in C(H)$ such that $\operatorname{tr}(TKN) \neq 0$. Let D_N be the derivation from A_T^0 to $(A_{TK}^0)^{\mathsf{T}}$ defined by $D_N(A) := NA - AN$ for all $A \in A_T^0 \subseteq B(H) = C(H)^*$, where $(A_{TK}^0)^{\mathsf{T}}$ is the annihilator of A_{TK}^0 taken in C(H) (note that $A_{TK}^0 \subseteq A_T^0$, so $D: A_T^0 \to (A_T^0)^{\mathsf{T}} \subseteq (A_{TK}^0)^{\mathsf{T}}$). Besides this, $(A_{TK}^0)^{\mathsf{T}}$ is a Banach A_T^0 -bimodule in C(H). Since A_T^0 is amenable D_N is inner, so there exists an $M \in (A_{TK}^0)^{\mathsf{T}}$ such that $D_N(A) = MA - AM$ for all $A \in A_T^0$. This means that KT(N-M) = (N-M)KT and $\operatorname{tr}(KT(N-M)) = \operatorname{tr}((N-M)KT) \neq 0$. Hence $\sigma(KT(N-M)) \neq \{0\}$ where $\sigma(KT(N-M))$ denotes the spectrum of KT(N-M). Since KT and N-M commute we have $\sigma(KT(N-M)) \subseteq \sigma(KT)\sigma(N-M)$ and therefore $\sigma(KT) \neq \{0\}$. Similarly, $\sigma(KT) \subseteq \sigma(K)\sigma(T)$, whence $\sigma(T) \neq \{0\}$. Therefore T is non quasinilpotent.

Main result: Commutative case

Theorem. (Rachid, Pnto)

If A_T^0 amenable and contains a non trivial compact operator K, then T is non quasinilpotent.

- Proof: ullet We show that $TK \neq 0$. Indeed, if that is not the case, then since $K \in A_T^0$, K is a limit of polynomial $P_n(T)$ with $P_n(0) = 0$. So K^2 is the limit of $P_n(T)K$. Note now that $P_n(T)K = 0$ for all n, so $K^2 = 0$ thus K is nilpotent. This implies that A_K^0 is finite dimensional amenable algebra and thus it is semisimple algebra. Therefore K = 0
- So since $TK \neq 0$, there exists a trace-class operator $N \in C(H)$ such that $\operatorname{tr}(TKN) \neq 0$. Let D_N be the derivation from A_T^0 to $(A_{TK}^0)^{\mathsf{T}}$ defined by $D_N(A) := NA AN$ for all $A \in A_T^0 \subseteq B(H) = C(H)^*$, where $(A_{TK}^0)^{\mathsf{T}}$ is the annihilator of A_{TK}^0 taken in C(H) (note that $A_{TK}^0 \subseteq A_T^0$, so $D: A_T^0 \to (A_T^0)^{\mathsf{T}} \subseteq (A_{TK}^0)^{\mathsf{T}}$). Besides this, $(A_{TK}^0)^{\mathsf{T}}$ is a Banach A_T^0 -bimodule in C(H). Since A_T^0 is amenable D_N is inner, so there exists an $M \in (A_{TK}^0)^{\mathsf{T}}$ such that $D_N(A) = MA AM$ for all $A \in A_T^0$. This means that KT(N M) = (N M)KT and $\operatorname{tr}(KT(N M)) = \operatorname{tr}((N M)KT) \neq 0$. Hence $\sigma(KT(N M)) \neq \{0\}$ where $\sigma(KT(N M))$ denotes the spectrum of KT(N M). Since KT and N M commute we have $\sigma(KT(N M)) \subseteq \sigma(KT)\sigma(N M)$ and therefore $\sigma(KT) \neq \{0\}$. Similarly, $\sigma(KT) \subseteq \sigma(K)\sigma(T)$, whence $\sigma(T) \neq \{0\}$. Therefore T is non quasinilootent.

Let (G, α, A) a discret C*dynamical System.

$$l^{1}(G, \alpha, A) = \{a : G \longrightarrow A \text{ such that } \sum_{g \in G} ||a(g)||_{A} < \infty\}.$$

We supply $l^1(G, \alpha, A)$ with

$$(ab)_g = \sum_{t \in G} a_t \cdot \alpha_t(b_{t^{-1}g}) \quad (g \in G, \ a, \ b \ \in l^1(G, \alpha, A))$$

and

$$a_g^* = \alpha_g((a_{g^{-1}})^*).$$

 $l^1(G,\alpha,A)$ become a Banach algebra with an isometry involution.

Let (G, α, A) a discret C*dynamical System.

$$l^{1}(G, \alpha, A) = \{a : G \longrightarrow A \text{ such that } \sum_{g \in G} ||a(g)||_{A} < \infty\}.$$

We supply $l^1(G, \alpha, A)$ with

$$(ab)_g = \sum_{t \in G} a_t \cdot \alpha_t(b_{t^{-1}g}) \quad (g \in G, \ a, \ b \ \in l^1(G, \alpha, A))$$

and

$$a_g^* = \alpha_g((a_{g^{-1}})^*).$$

 $l^1(G,\alpha,A)$ become a Banach algebra with an isometry involution.

Let (G, α, A) a discret C*dynamical System.

$$l^{1}(G, \alpha, A) = \{a : G \longrightarrow A \text{ such that } \sum_{g \in G} \|a(g)\|_{A} < \infty\}.$$

We supply $l^1(G, \alpha, A)$ with

$$(ab)_g = \sum_{t \in G} a_t \cdot \alpha_t(b_{t^{-1}g}) \quad (g \in G, \ a, \ b \ \in l^1(G, \alpha, A))$$

and

$$a_g^* = \alpha_g((a_{g^{-1}})^*).$$

 $l^1(G,\alpha,A)$ become a Banach algebra with an isometry involution.

Let (G, α, A) a discret C*dynamical System.

$$l^{1}(G, \alpha, A) = \{a : G \longrightarrow A \text{ such that } \sum_{g \in G} \|a(g)\|_{A} < \infty\}.$$

We supply $l^1(G, \alpha, A)$ with

$$(ab)_g = \sum_{t \in G} a_t \cdot \alpha_t(b_{t^{-1}g}) \quad (g \in G, \ a, \ b \ \in l^1(G, \alpha, A))$$

and

$$a_g^* = \alpha_g((a_{g^{-1}})^*).$$

 $l^1(G,\alpha,A)$ become a Banach algebra with an isometry involution.

Let (G, α, A) a discret C*dynamical System.

$$l^1(G, \alpha, A) = \{a : G \longrightarrow A \text{ such that } \sum_{g \in G} \|a(g)\|_A < \infty\}.$$

We supply $l^1(G, \alpha, A)$ with

$$(ab)_g = \sum_{t \in G} a_t \cdot \alpha_t(b_{t^{-1}g}) \quad (g \in G, \ a, \ b \ \in l^1(G, \alpha, A))$$

and

$$a_g^* = \alpha_g((a_{g^{-1}})^*).$$

 $l^1(G,\alpha,A)$ become a Banach algebra with an isometry involution.

Two Examples:

- 1. $A = \mathbb{C}$, then $l^1(G, triv, C)$ is the usual group algebra $l^1(G)$.
- 2. $G = \mathbb{Z}$ and A = C(X) and consider $\sigma : X \longrightarrow X$ a homeomorphism. We get a \mathbb{Z} -action defined by $\alpha_n(f) = f \circ \sigma^{-n}$.

Theorem. Marcel de Jeu and Jun Tomiyama

 $L^1(\mathbb{Z}, \sigma, C(X))$ is semisimple.

Remarks : For any discret C*- dynamical system (G, α, A) , $l^1(G, \alpha, A)$ is semisimple.

Two Examples:

- 1. $A = \mathbb{C}$, then $l^1(G, triv, C)$ is the usual group algebra $l^1(G)$.
- 2. $G = \mathbb{Z}$ and A = C(X) and consider $\sigma : X \longrightarrow X$ a homeomorphism. We get a \mathbb{Z} -action defined by $\alpha_n(f) = f \circ \sigma^{-n}$.

Theorem. Marcel de Jeu and Jun Tomiyama

 $L^1(\mathbb{Z}, \sigma, C(X))$ is semisimple.

Remarks : For any discret C*- dynamical system (G, α, A) , $l^1(G, \alpha, A)$ is semisimple.

Two Examples:

1. $A = \mathbb{C}$, then $l^1(G, triv, C)$ is the usual group algebra $l^1(G)$.

2. $G = \mathbb{Z}$ and A = C(X) and consider $\sigma : X \longrightarrow X$ a homeomorphism. We get a \mathbb{Z} -action defined by $\alpha_n(f) = f \circ \sigma^{-n}$.

Theorem. Marcel de Jeu and Jun Tomiyama

 $L^1(\mathbb{Z}, \sigma, C(X))$ is semisimple.

Remarks : For any discret C*- dynamical system (G, α, A) , $l^1(G, \alpha, A)$ is semisimple.

Two Examples:

- 1. $A = \mathbb{C}$, then $l^1(G, triv, C)$ is the usual group algebra $l^1(G)$.
- 2. $G=\mathbb{Z}$ and A=C(X) and consider $\sigma:X\longrightarrow X$ a homeomorphism. We get a \mathbb{Z} -action defined by $\alpha_n(f)=f\circ\sigma^{-n}$.

Theorem. Marcel de Jeu and Jun Tomiyama

 $L^1(\mathbb{Z}, \sigma, C(X))$ is semisimple.

Remarks : For any discret C*- dynamical system (G, α, A) , $l^1(G, \alpha, A)$ is semisimple.

Two Examples:

- 1. $A = \mathbb{C}$, then $l^1(G, triv, C)$ is the usual group algebra $l^1(G)$.
- 2. $G = \mathbb{Z}$ and A = C(X) and consider $\sigma : X \longrightarrow X$ a homeomorphism. We get a \mathbb{Z} -action defined by $\alpha_n(f) = f \circ \sigma^{-n}$.

Theorem. Marcel de Jeu and Jun Tomiyama

 $L^1(\mathbb{Z}, \sigma, C(X))$ is semisimple.

Remarks : For any discret C*- dynamical system (G, α, A) , $l^1(G, \alpha, A)$ is semisimple.

Two Examples:

- 1. $A = \mathbb{C}$, then $l^1(G, triv, C)$ is the usual group algebra $l^1(G)$.
- 2. $G = \mathbb{Z}$ and A = C(X) and consider $\sigma : X \longrightarrow X$ a homeomorphism. We get a \mathbb{Z} -action defined by $\alpha_n(f) = f \circ \sigma^{-n}$.

Theorem. Marcel de Jeu and Jun Tomiyama

 $L^1(\mathbb{Z}, \sigma, C(X))$ is semisimple.

Remarks : For any discret C*- dynamical system $(G,\alpha,A),\,l^1(G,\alpha,A)$ is semisimple.

Two Examples:

- 1. $A = \mathbb{C}$, then $l^1(G, triv, C)$ is the usual group algebra $l^1(G)$.
- 2. $G = \mathbb{Z}$ and A = C(X) and consider $\sigma : X \longrightarrow X$ a homeomorphism. We get a \mathbb{Z} -action defined by $\alpha_n(f) = f \circ \sigma^{-n}$.

Theorem. Marcel de Jeu and Jun Tomiyama

 $L^1(\mathbb{Z}, \sigma, C(X))$ is semisimple.

Remarks : For any discret C*- dynamical system $(G,\alpha,A),\,l^1(G,\alpha,A)$ is semisimple.

For $g \in G$, et $\delta_g : G \longrightarrow A$ be defined by

$$\delta_g(t) = \left\{ egin{array}{ll} 1_A, & ext{if t =g;} \\ 0, & ext{if not.} \end{array}
ight.$$

 $\delta_g \in l^1(G, \alpha, A)$ and δ_e is the identity of $l^1(G, \alpha, A)$.

Each element $a = (a_g)_{g \in G}$ of $l^1(G, \alpha, A)$ can be written in the form

$$\sum_{g \in G} a_g \delta_g.$$

and

$$\alpha_g(a) = \delta_g a \delta_{g^{-1}} \quad g \in G \quad and \ a \in A$$

For $g \in G$, et $\delta_g : G \longrightarrow A$ be defined by

$$\delta_g(t) = \left\{ egin{array}{ll} 1_A, & ext{if t =g;} \\ 0, & ext{if not.} \end{array}
ight.$$

 $\delta_g \in l^1(G, \alpha, A)$ and δ_e is the identity of $l^1(G, \alpha, A)$.

Each element $a = (a_g)_{g \in G}$ of $l^1(G, \alpha, A)$ can be written in the form

$$\sum_{g \in G} a_g \delta_g.$$

and

$$\alpha_g(a) = \delta_g a \delta_{g^{-1}} \quad g \in G \quad and \ a \in A$$

For $g \in G$, et $\delta_g : G \longrightarrow A$ be defined by

$$\delta_g(t) = \left\{ egin{array}{ll} 1_A, & \mbox{if t =g;} \\ 0, & \mbox{if not.} \end{array}
ight.$$

 $\delta_g \in l^1(G, \alpha, A)$ and δ_e is the identity of $l^1(G, \alpha, A)$.

Each element $a=(a_g)_{g\in G}$ of $l^1(G,\alpha,A)$ can be written in the form

$$\sum_{g \in G} a_g \delta_g.$$

and

$$\alpha_g(a) = \delta_g a \delta_{g^{-1}} \quad g \in G \quad and \ a \in A$$

For $g \in G$, et $\delta_g : G \longrightarrow A$ be defined by

$$\delta_g(t) = \left\{ egin{array}{ll} 1_A, & \mbox{if t =g;} \\ 0, & \mbox{if not.} \end{array} \right.$$

 $\delta_g \in l^1(G, \alpha, A)$ and δ_e is the identity of $l^1(G, \alpha, A)$.

Each element $a=(a_g)_{g\in G}$ of $l^1(G,\alpha,A)$ can be written in the form

$$\sum_{g \in G} a_g \delta_g.$$

and

$$\alpha_g(a) = \delta_g a \delta_{g^{-1}} \quad g \in G \quad and \ a \in A$$

For $g \in G$, et $\delta_g : G \longrightarrow A$ be defined by

$$\delta_g(t) = \left\{ egin{array}{ll} 1_A, & \mbox{if t =g;} \\ 0, & \mbox{if not.} \end{array} \right.$$

 $\delta_g \in l^1(G, \alpha, A)$ and δ_e is the identity of $l^1(G, \alpha, A)$.

Each element $a=(a_g)_{g\in G}$ of $l^1(G,\alpha,A)$ can be written in the form

$$\sum_{g\in G} a_g \delta_g.$$

and

$$\alpha_g(a) = \delta_g a \delta_{g^{-1}}$$
 $g \in G$ and $a \in A$

Lemma.

Let (G,α,A) be a C*-dynamical system where A is unital and G is discrete. The the set $\{u\delta_g, u\in Uandg\in G\}$ is a subgroup of invertible elements of $l^1(G,\alpha,A)$ that is canonically isomorphic to the semidirect product group $U\ltimes_\alpha G$. The norm closed linear space of this set $l^1(G,\alpha,A)$.

Theorem: R. El Harti and Marcel de Jeu July 2016

Let (G,α,A) be a C*-dynamical system where A is commutative unital C*-algebra and G is amenable discrete group. Then $l^1(G,\alpha,A)$ is amenable.

Proof:

1. step

• With G amenable and U is abelian group, we check that $U \ltimes_{\alpha} G$ is amenable

3. step ullet The canonical isomorphism from $Ux_{\alpha}G$ onto the set $\{u\delta_g, u\in U,\ g\in G\}$ can be extended to a homomorphism from

$$l^1(U \ltimes_{\alpha} G) \longrightarrow l^1(G, \alpha, A)$$

with dense image.

• Since $U \ltimes_{\alpha} G$ is amenable discrete group, By Johnson $l^{1}(U \ltimes_{\alpha} G)$.

• The stability of amenability to the image, we have $l^1(G,\alpha,A)$ is amenable.

Theorem: R. El Harti and Marcel de Jeu July 2016

Let (G,α,A) be a C*-dynamical system where A is commutative unital C*-algebra and G is amenable discrete group. Then $l^1(G,\alpha,A)$ is amenable.

Proof:

• With G amenable and U is abelian group, we check that $U \ltimes_{\alpha} G$ is amenable.

3. step ullet The canonical isomorphism from $Ux_{\alpha}G$ onto the set $\{u\delta_g, u\in U,\ g\in G\}$ can be extended to a homomorphism from

$$l^1(U \ltimes_{\alpha} G) \longrightarrow l^1(G, \alpha, A)$$

- Since $U \ltimes_{\alpha} G$ is amenable discrete group, By Johnson $l^{1}(U \ltimes_{\alpha} G)$.

Theorem: R. El Harti and Marcel de Jeu July 2016

Let (G,α,A) be a C*-dynamical system where A is commutative unital C*-algebra and G is amenable discrete group. Then $l^1(G,\alpha,A)$ is amenable.

Proof:

- With G amenable and U is abelian group, we check that $U \ltimes_{\alpha} G$ is amenable.
- 3. step ullet The canonical isomorphism from $Ux_{\alpha}G$ onto the set $\{u\delta_g, u\in U,\ g\in G\}$ can be extended to a homomorphism from

$$l^{1}(U \ltimes_{\alpha} G) \longrightarrow l^{1}(G, \alpha, A)$$

- Since $U \ltimes_{\alpha} G$ is amenable discrete group. By Johnson $l^1(U \ltimes_{\alpha} G)$.
- The stability of amenability to the image, we have $l^1(G,\alpha,A)$ is angegable.

Theorem: R. El Harti and Marcel de Jeu July 2016

Let (G, α, A) be a C*-dynamical system where A is commutative unital C*-algebra and G is amenable discrete group. Then $l^1(G, \alpha, A)$ is amenable.

Proof:

- ullet With G amenable and U is abelian group, we check that $U \ltimes_{\alpha} G$ is amenable.
- 3. step ullet The canonical isomorphism from $Ux_{\alpha}G$ onto the set $\{u\delta_g, u\in U,\ g\in G\}$ can be extended to a homomorphism from

$$l^{1}(U \ltimes_{\alpha} G) \longrightarrow l^{1}(G, \alpha, A)$$

- Since $U \ltimes_{\alpha} G$ is amenable discrete group, By Johnson $l^{1}(U \ltimes_{\alpha} G)$.
- The stability of amenability to the image, we have $l^1(G,\alpha,A)$ is an enable.

Theorem: R. El Harti and Marcel de Jeu July 2016

Let (G,α,A) be a C*-dynamical system where A is commutative unital C*-algebra and G is amenable discrete group. Then $l^1(G,\alpha,A)$ is amenable.

Proof:

- With G amenable and U is abelian group, we check that $U \ltimes_{\alpha} G$ is amenable.
- 3. step ullet The canonical isomorphism from $Ux_{\alpha}G$ onto the set $\{u\delta_g, u\in U,\ g\in G\}$ can be extended to a homomorphism from

$$l^{1}(U \ltimes_{\alpha} G) \longrightarrow l^{1}(G, \alpha, A)$$

- Since $U \ltimes_{\alpha} G$ is amenable discrete group, By Johnson $l^{1}(U \ltimes_{\alpha} G)$.
- The stability of amenability to the image, we have $l^1(G, \alpha, A)$ is amenable.

Open Problem

For any amenable commutative unital C*-algebra A and discrete group G, if $l^1(U \ltimes_{\alpha} G)$ is amenable, is G is amenable?

Open Problem

For any amenable commutative unital C*-algebra A and discrete group G, if $l^1(U \ltimes_\alpha G)$ is amenable, is G is amenable?

Merci bien pour votre attention]